12 The EM algorithm

We will first motivate the Expectation-Maximization algorithm (EM) with an example.
Example 26 (Gaussian mixture). Suppose we want to compute the MLEs and we have

data X1, Xs, ..., X, from a mizture of normal distribution:
f(alp, po, 0%, 03, 7%) = " fi (2], 07) + (1= 7°) fol; p203) -

We are interested in the MLEs of i1, 2, 07, 03, 7, which involves maximizing:

l(ﬂla“?aa%aagaﬂ*’X) = Zlog f(xi‘,uhﬂ%a%vagﬂr*) .

i=1

The idea behind the EM algorithm is to treat the problem as a “missing data/value
problem”, if all the data was available to us, it is assumed that solving the problem

would be easier.

Suppose I have the information that )i is coming from which of the two populations.

Thus, suppose the complete data was of the form
(X17 Zl)7 (X27 22)7 ceey (Xn7 Zn) )

where each Z; = k means that X; is from population k. If the whole data was available

to us, then first note that the joint density is
fl@iz =k) = flzi|z =k)Pr(Zi = k).

Suppose Dy ={i:1<i<mn,z =1} and Dy = {i : 1 <i < n,z =2}, with cardinality
dy and dy respectively.. Then the likelihood from the full data is

L(NDM%U%?U%)W*‘X)
= [[ f@ilze =1)Pr(Z = 1) [] f(xilz: = 2) Pr(Zi = 2)

i€Dy J€D2
= H [7* fi(wilp, 0F)] H [fo(@ilp2, 03) (1 — 7)]
1€Dq JED>
= (7" (1 — %) H [fr(@ilpa, 07))] H [ fa(il s, 03)]
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= log L = dy log(7) + dalog(1 — 7*) + Z log fi(i|p, 07) + Z log fa(xi|p2, 03)

1€Dy 1€D2
Differentiating with respect to 7*, we get

o _ i _dy

omr* mw 1—x*

This gives that the MLE is
i dy

:d1+d2_n.

~ %

You can also see that the MLEs for juy, i3, 0%, 03 have all been isolated so that

So, if the complete data was available to me, I could easily find the MLE of all the 5
parameters. Unfortunately, the Zs are not available to me, and I have only observed
the Xs. Thus, my likelihood is:

l(ﬂlau%g%’agaﬂ-*p() = Zlog f(xi|:u17:u270-%70-§7ﬂ-*) = Zlog Z f(xla Zi = k|ﬂlvu2’0%’gg7ﬂ-*)'
i=1 =1 k=1,2

The EM algorithm will solve this problem.

The EM Algorithm Suppose, in general, I have a vector of parameters ¢, and I have
observed the marginal data X7, ..., X,, from the complete data (X;, Z;). The objective

function is to maximize is

1(0|X) = log/f(x,zIQ)dl/z.

The EM algorithm iterates through the following: Consider a starting value 6y. Then

for any k + 1 iteration

1. E-Step: Compute

(0:009) = Bz, | 1og f(x,2(6) | Y = ]
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where the expectation is computed with respect to the conditional distribution

of Z given Y = y for the current iterate 0.

2. M-Step: Compute
Or1 = argmax q(0; 0y,) .
0ce

Proof of EM algorithm convergence. The EM algorithm works because it is a special

case of the MM algorithm. The objective function is

f(0) =log f(x]0).

The minorizing function is (0|0 = q(0]0())+constants. Let

F(010u) = /IOg{f(XaZW)}f(Z’&9(k))d2+10g f(XW(k))—/log{f(XaZ\e(k))}f(zlxa9(k))d2-

Naturally, we can see that at 6 = Ou), f(0]0k) = f(0@. We will now show that
minorizing property.

F(0160)

= /10g{f(x,Z!9)}f(Z|X,H(k))dz+10gf(X|9<k)) —/10g{f(X7Z!9(k>)}f(Z|X, Owy)dz

= 10 { 12210) F@l0w)
_/zl g{ f(z, 2]0)) }f( 7. 6w)

= 10 { 1220 F@lOw) og F(z10) — log f(x
~ [og { LRI ek )+ o £ al) — o F o)

[ 1e {1210 f@low) ol og f(z
-/ g{ el g w} F (2], 6 + log £ (1)

By Jensen’s inequality;,
f(x,2|0) f(x[0)) }
< tog [ {2 B a1o) | el )+ o )

0)
log/f ’J;xe (z|z, Ou) + log f(x]0)

= log/f(z|x,9)dz + log f(x|0)

— log f(x]6)
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Thus, f(0 |0(x)) is a minorizing function, and the next iterate is
O(k+1) = arg max F(616w) = a(6160)
O

Back to the example: To implement the EM algorithm, we first need to find
q(0]0()). First note that the conditional distribution of Z|X is

fe(@|pte, o2) e
Pr(Z =clX =2) = £ )
rl d “) Zj:1,2 fj(xmja"g?)ﬁj

So for any kth iterate with current step 0y = (1 k, tiok, 07 1> 055, T), We have

fe(@|piek, 02) e
Zj:LQ fj (ﬂﬂj}kv O‘j%k)ﬂ-jvk '

Pr(Z =cX =x,0) =

The above can be calculate explicitly for any data points x. So
q9(010)) = Bz [log f(x,2]0) | X = z,04)]

i=1

=Y Bz, [log f(@i,2i]0) | X = 24,00

1=1

fe(@il e, 02,
_Zzlog{fc xz|,UJc, o, 7Tc} Z |’u k k) k

i=1 c=1 j= 12f](xl|lu]k‘a ]k)ﬂ-]k:

This is the E-step. To implement the E-step we need to update

fc(xi‘,uc,ka Uik)”c,k
Zj:1,2 fi(@il g p, ng,k)ﬂj,k .

Yi,ek =
This completes the E-step. We move on to the M-step. To complete the M-step

O(k+1) = argmax q(0|0)) -

n 2

=5"%" {1og fulwilpe, 02) +log e} Yicw

=1 c=1
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n 2

L Logg?  (Kimpe)”
=% [~ tosten) - Jogo? - Kty iogn o,

=1 c=1
n 2

—COHSt——ZZIOgU Yiek — ZZ 'Yzck‘i‘zzlogﬂ-cfyzck

=1 c=1 i=1 c=1 i=1 c=1

Taking derivatives and setting to 0, we get For any c,

OL = (T — o) Vi set S Viek T

=) —5———=0= p =5 1
Opte ; o¢ flettn = D im1 Vi 8
oL IR Yi,c,k - (@ — ,uc>2 set Z?:l Vi (Ti — Mg,(k—i—l))
D D e D e e S T

(2)

For 7, note that the optimization requires a constraint, since ) m. = 1. So we will

use Lagrange multipliers. The objective function is
- A (Z T, — 1)
c=1
8L _ Yi,c.k set
= = —— —X=0
on. ; T,
ST =) %
i=1
. . Yi,c,k
> M=)
c c =1
1
=3 Zl

=A=n

1
=T, (k+1) = Te,(k+1) = " Z%,c,k- (3)

=1

Thus equations (1) and (3) provide the iterative updates for the parameters.
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