12 The EM algorithm

We will first motivate the Expectation-Maximization algorithm (EM) with an example. Example 26 (Gaussian mixture). Suppose we want to compute the MLEs and we have data $X_{1}, X_{2}, \ldots, X_{n}$ from a mixture of normal distribution:

$$
f\left(x \mid \mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \pi^{*}\right)=\pi^{*} f_{1}\left(x \mid \mu_{1}, \sigma_{1}^{2}\right)+\left(1-\pi^{*}\right) f_{2}\left(x ; \mu_{2} \sigma_{2}^{2}\right)
$$

We are interested in the MLEs of $\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \pi^{*}$, which involves maximizing:

$$
l\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \pi^{*} \mid X\right)=\sum_{i=1}^{n} \log f\left(x_{i} \mid \mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \pi^{*}\right) .
$$

The idea behind the EM algorithm is to treat the problem as a "missing data/value problem", if all the data was available to us, it is assumed that solving the problem would be easier.

Suppose I have the information that $x) i$ is coming from which of the two populations. Thus, suppose the complete data was of the form

$$
\left(X_{1}, Z_{1}\right),\left(X_{2}, Z_{2}\right), \ldots,\left(X_{n}, Z_{n}\right),
$$

where each $Z_{i}=k$ means that X_{i} is from population k. If the whole data was available to us, then first note that the joint density is

$$
f\left(x_{i}, z_{i}=k\right)=f\left(x_{i} \mid z_{i}=k\right) \operatorname{Pr}\left(Z_{i}=k\right) .
$$

Suppose $\mathcal{D}_{1}=\left\{i: 1 \leq i \leq n, z_{i}=1\right\}$ and $\mathcal{D}_{2}=\left\{i: 1 \leq i \leq n, z_{i}=2\right\}$, with cardinality $d_{!}$and d_{2} respectively.. Then the likelihood from the full data is

$$
\begin{aligned}
& L\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \pi^{*} \mid X\right) \\
& =\prod_{i \in \mathcal{D}_{1}} f\left(x_{i} \mid z_{i}=1\right) \operatorname{Pr}\left(Z_{i}=1\right) \prod_{j \in \mathcal{D}_{2}} f\left(x_{i} \mid z_{i}=2\right) \operatorname{Pr}\left(Z_{i}=2\right) \\
& =\prod_{i \in \mathcal{D}_{1}}\left[\pi^{*} f_{1}\left(x_{i} \mid \mu_{1}, \sigma_{1}^{2}\right)\right] \prod_{j \in \mathcal{D}_{2}}\left[f_{2}\left(x_{i} \mid \mu_{2}, \sigma_{2}^{2}\right)\left(1-\pi^{*}\right)\right] \\
& =\left(\pi^{*}\right)^{d_{1}}\left(1-\pi^{*}\right)^{d_{2}} \prod_{i \in \mathcal{D}_{1}}\left[f_{1}\left(x_{i} \mid \mu_{1}, \sigma_{1}^{2}\right)\right] \prod_{j \in \mathcal{D}_{2}}\left[f_{2}\left(x_{i} \mid \mu_{2}, \sigma_{2}^{2}\right)\right]
\end{aligned}
$$

$$
\Rightarrow \log L=d_{1} \log \left(\pi^{*}\right)+d_{2} \log \left(1-\pi^{*}\right)+\sum_{i \in \mathcal{D}_{1}} \log f_{1}\left(x_{i} \mid \mu_{1}, \sigma_{1}^{2}\right)+\sum_{i \in \mathcal{D}_{2}} \log f_{2}\left(x_{i} \mid \mu_{2}, \sigma_{2}^{2}\right)
$$

Differentiating with respect to π^{*}, we get

$$
\frac{\partial l}{\partial \pi^{*}}=\frac{d_{1}}{\pi^{*}}-\frac{d_{2}}{1-\pi^{*}} \stackrel{\text { set }}{=} 0
$$

This gives that the MLE is

$$
\hat{\pi}^{*}=\frac{d_{1}}{d_{1}+d_{2}}=\frac{d_{1}}{n} .
$$

You can also see that the MLEs for $\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}$ have all been isolated so that

$$
\begin{gathered}
\hat{\mu}_{1}=\frac{1}{d_{1}} \sum_{i \in \mathcal{D}_{1}} X_{i} \quad, \quad \hat{\mu}_{2}=\frac{1}{d_{2}} \sum_{i \in \mathcal{D}_{2}} X_{i} \\
\sigma_{1}^{2}=\frac{1}{d_{1}} \sum_{i \in \mathcal{D}_{1}}\left(X_{i}-\hat{\mu}_{1}\right)^{2} \quad, \quad \sigma_{2}^{2}=\frac{1}{d_{2}} \sum_{i \in \mathcal{D}_{2}}\left(X_{i}-\hat{\mu}_{2}\right)^{2}
\end{gathered}
$$

So, if the complete data was available to me, I could easily find the MLE of all the 5 parameters. Unfortunately, the Z s are not available to me, and I have only observed the X s. Thus, my likelihood is:
$l\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \pi^{*} \mid X\right)=\sum_{i=1}^{n} \log f\left(x_{i} \mid \mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \pi^{*}\right)=\sum_{i=1}^{n} \log \sum_{k=1,2} f\left(x_{i}, z_{i}=k \mid \mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \pi^{*}\right)$.
The EM algorithm will solve this problem.

The EM Algorithm Suppose, in general, I have a vector of parameters θ, and I have observed the marginal data X_{1}, \ldots, X_{n} from the complete data (X_{i}, Z_{i}). The objective function is to maximize is

$$
l(\theta \mid X)=\log \int f(x, z \mid \theta) d \nu_{z}
$$

The EM algorithm iterates through the following: Consider a starting value θ_{0}. Then for any $k+1$ iteration

1. E-Step: Compute

$$
q\left(\theta ; \theta_{(k)}\right)=\mathrm{E}_{Z \mid y}[\log f(\mathbf{x}, \mathbf{z} \mid \theta) \mid Y=y]
$$

where the expectation is computed with respect to the conditional distribution of Z given $Y=y$ for the current iterate $\theta_{(k)}$.

2. M-Step: Compute

$$
\theta_{k+1}=\arg \max _{\theta \in \Theta} q\left(\theta ; \theta_{k}\right)
$$

Proof of EM algorithm convergence. The EM algorithm works because it is a special case of the MM algorithm. The objective function is

$$
f(\theta)=\log f(\mathbf{x} \mid \theta)
$$

The minorizing function is $\tilde{f}\left(\theta \mid \theta_{(k)}=q\left(\theta \mid \theta_{(k)}\right)+\right.$ constants. Let
$\tilde{f}\left(\theta \mid \theta_{(k)}\right)=\int_{z} \log \{f(\mathbf{x}, \mathbf{z} \mid \theta)\} f\left(\mathbf{z} \mid \mathbf{x}, \theta_{(k)}\right) d z+\log f\left(\mathbf{x} \mid \theta_{(k)}\right)-\int_{z} \log \left\{f\left(\mathbf{x}, \mathbf{z} \mid \theta_{(k)}\right)\right\} f\left(\mathbf{z} \mid \mathbf{x}, \theta_{(k)}\right) d z$.
Naturally, we can see that at $\theta=\theta_{(k)}, \tilde{f}\left(\theta \mid \theta_{(k)}\right)=f\left(\theta_{(k)}\right.$. We will now show that minorizing property.

$$
\begin{aligned}
& \tilde{f}\left(\theta \mid \theta_{(k)}\right) \\
& =\int_{z} \log \{f(\mathbf{x}, \mathbf{z} \mid \theta)\} f\left(\mathbf{z} \mid \mathbf{x}, \theta_{(k)}\right) d z+\log f\left(\mathbf{x} \mid \theta_{(k)}\right)-\int_{z} \log \left\{f\left(\mathbf{x}, \mathbf{z} \mid \theta_{(k)}\right)\right\} f\left(\mathbf{z} \mid \mathbf{x}, \theta_{(k)}\right) d z \\
& =\int_{z} \log \left\{\frac{f(\mathbf{x}, \mathbf{z} \mid \theta) f\left(x \mid \theta_{(k)}\right)}{f\left(x, z \mid \theta_{(k)}\right)}\right\} f\left(z \mid x, \theta_{(k)}\right) \\
& =\int_{z} \log \left\{\frac{f(\mathbf{x}, \mathbf{z} \mid \theta) f\left(x \mid \theta_{(k)}\right)}{f\left(x, z \mid \theta_{(k)}\right)}\right\} f\left(z \mid x, \theta_{(k)}\right)+\log f(x \mid \theta)-\log f(x \mid \theta) \\
& =\int_{z} \log \left\{\frac{f(\mathbf{x}, \mathbf{z} \mid \theta) f\left(x \mid \theta_{(k)}\right)}{f\left(x, z \mid \theta_{(k)}\right)} f(x \mid \theta)\right\} f\left(z \mid x, \theta_{(k)}\right)+\log f(x \mid \theta)
\end{aligned}
$$

By Jensen's inequality,

$$
\begin{aligned}
& \leq \log \int_{z}\left\{\frac{f(\mathbf{x}, \mathbf{z} \mid \theta) f\left(x \mid \theta_{(k)}\right)}{f\left(x, z \mid \theta_{(k)}\right)} f(x \mid \theta)\right\} f\left(z \mid x, \theta_{(k)}\right)+\log f(x \mid \theta) \\
& =\log \int_{z} \frac{f(z \mid x, \theta)}{f\left(z \mid x, \theta_{(k)}\right)} f\left(z \mid x, \theta_{(k)}\right)+\log f(x \mid \theta) \\
& =\log \int_{z} f(z \mid x, \theta) d z+\log f(x \mid \theta) \\
& =\log f(x \mid \theta)
\end{aligned}
$$

Thus, $\tilde{f}\left(\theta \mid \theta_{(k)}\right)$ is a minorizing function, and the next iterate is

$$
\theta_{(k+1)}=\arg \max _{\theta} \tilde{f}\left(\theta \mid \theta_{(k)}\right)=q\left(\theta \mid \theta_{(k)}\right)
$$

Back to the example: To implement the EM algorithm, we first need to find $q\left(\theta \mid \theta_{(k)}\right)$. First note that the conditional distribution of $Z \mid X$ is

$$
\operatorname{Pr}(Z=c \mid X=x)=\frac{f_{c}\left(x \mid \mu_{c}, \sigma_{c}^{2}\right) \pi_{c}}{\sum_{j=1,2} f_{j}\left(x \mid \mu_{j}, \sigma_{j}^{2}\right) \pi_{j}} .
$$

So for any k th iterate with current step $\theta_{(k)}=\left(\mu_{1, k}, \mu_{2, k}, \sigma_{1, k}^{2}, \sigma_{2, k}^{2}, \pi_{k}^{*}\right)$, we have

$$
\operatorname{Pr}\left(Z=c \mid X=x, \theta_{(k)}\right)=\frac{f_{c}\left(x \mid \mu_{c, k}, \sigma_{c, k}^{2}\right) \pi_{c, k}}{\sum_{j=1,2} f_{j}\left(x \mid \mu_{j, k}, \sigma_{j, k}^{2}\right) \pi_{j, k}} .
$$

The above can be calculate explicitly for any data points x. So

$$
\begin{aligned}
q\left(\theta \mid \theta_{(k)}\right) & =\mathrm{E}_{Z \mid x}\left[\log f(x, z \mid \theta) \mid X=x, \theta_{(k)}\right] \\
& =\mathrm{E}_{Z \mid x}\left[\sum_{i=1}^{n} \log f\left(x_{i}, z_{i} \mid \theta\right) \mid X=x, \theta_{(k)}\right] \\
& =\sum_{i=1}^{n} \mathrm{E}_{Z_{i} \mid x_{i}}\left[\log f\left(x_{i}, z_{i} \mid \theta\right) \mid X=x_{i}, \theta_{(k)}\right] \\
& =\sum_{i=1}^{n} \sum_{c=1}^{2} \log \left\{f_{c}\left(x_{i} \mid \mu_{c}, \sigma_{c}^{2}\right) \pi_{c}\right\} \frac{f_{c}\left(x_{i} \mid \mu_{c, k}, \sigma_{c, k}^{2}\right) \pi_{c, k}}{\sum_{j=1,2} f_{j}\left(x_{i} \mid \mu_{j, k}, \sigma_{j, k}^{2}\right) \pi_{j, k}} .
\end{aligned}
$$

This is the E-step. To implement the E-step we need to update

$$
\gamma_{i, c, k}=\frac{f_{c}\left(x_{i} \mid \mu_{c, k}, \sigma_{c, k}^{2}\right) \pi_{c, k}}{\sum_{j=1,2} f_{j}\left(x_{i} \mid \mu_{j, k}, \sigma_{j, k}^{2}\right) \pi_{j, k}} .
$$

This completes the E-step. We move on to the M-step. To complete the M-step

$$
\theta_{(k+1)}=\arg \max q\left(\theta \mid \theta_{(k)}\right) .
$$

$$
L(\theta)=\sum_{i=1}^{n} \sum_{c=1}^{2}\left\{\log f_{c}\left(x_{i} \mid \mu_{c}, \sigma_{c}^{2}\right)+\log \pi_{c}\right\} \gamma_{i, c, k}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \sum_{c=1}^{2}\left[-\frac{1}{2} \log (2 \pi)-\frac{1}{2} \log \sigma_{c}^{2}-\frac{\left(X_{i}-\mu_{c}\right)^{2}}{2 \sigma_{c}^{2}}+\log \pi_{c}\right] \gamma_{i, c, k} \\
& =\text { const }-\frac{1}{2} \sum_{i=1}^{n} \sum_{c=1}^{2} \log \sigma_{c}^{2} \gamma_{i, c, k}-\sum_{i=1}^{n} \sum_{c=1}^{2} \frac{\left(X_{i}-\mu_{c}\right)^{2}}{2 \sigma_{c}^{2}} \gamma_{i, c, k}+\sum_{i=1}^{n} \sum_{c=1}^{2} \log \pi_{c} \gamma_{i, c, k}
\end{aligned}
$$

Taking derivatives and setting to 0 , we get For any c,

$$
\begin{align*}
\frac{\partial L}{\partial \mu_{c}} & =\sum_{i=1}^{n} \frac{\left(x_{i}-\mu_{c}\right) \gamma_{i, c, k}}{\sigma_{c}^{2}} \stackrel{\text { set }}{=} 0 \Rightarrow \mu_{c,(k+1)}=\frac{\sum_{i=1}^{n} \gamma_{i, c, k} x_{i}}{\sum_{i=1}^{n} \gamma_{i, c, k}} \tag{1}\\
\frac{\partial L}{\partial \sigma_{c}^{2}} & =-\frac{1}{2} \sum_{i=1}^{n} \frac{\gamma_{i, c, k}}{\sigma_{c}^{2}}+\sum_{i=1}^{n} \frac{\left(x_{i}-\mu_{c}\right)^{2}}{2 \sigma_{c}^{4}} \gamma_{i, c, k} \stackrel{\text { set }}{=} 0 \Rightarrow \sigma_{c,(k+1)}^{2}=\frac{\sum_{i=1}^{n} \gamma_{i, c, k}\left(x_{i}-\mu_{c,(k+1)}^{2}\right)}{\sum_{i=1}^{n} \gamma_{i, c, k}} \tag{2}
\end{align*}
$$

For π_{c} note that the optimization requires a constraint, since $\sum_{c} \pi_{c}=1$. So we will use Lagrange multipliers. The objective function is

$$
\begin{align*}
& L(\theta)-\lambda\left(\sum_{c=1}^{c} \pi_{c}-1\right) \\
\Rightarrow & \frac{\partial L}{\partial \pi_{c}}=\sum_{i=1}^{n} \frac{\gamma_{i, c, k}}{\pi_{c}}-\lambda \stackrel{\text { set }}{=} 0 \\
\Rightarrow & \pi_{c}=\sum_{i=1}^{n} \frac{\gamma_{i, c, k}}{\lambda} \\
\Rightarrow & \sum_{c} \pi_{c}=\sum_{c} \sum_{i=1}^{n} \frac{\gamma_{i, c, k}}{\lambda} \\
\Rightarrow & 1=\frac{1}{\lambda} \sum_{i=1}^{n} \\
\Rightarrow & \lambda=n \\
\Rightarrow & \pi_{c,(k+1)}=\pi_{c,(k+1)}=\frac{1}{n} \sum_{i=1}^{n} \gamma_{i, c, k} . \tag{3}
\end{align*}
$$

Thus equations (1) and (3) provide the iterative updates for the parameters.

References

