
12 The EM algorithm

We will first motivate the Expectation-Maximization algorithm (EM) with an example.

Example 26 (Gaussian mixture). Suppose we want to compute the MLEs and we have

data X1, X2, . . . , Xn from a mixture of normal distribution:
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The idea behind the EM algorithm is to treat the problem as a “missing data/value

problem”, if all the data was available to us, it is assumed that solving the problem

would be easier.

Suppose I have the information that x)i is coming from which of the two populations.

Thus, suppose the complete data was of the form

(X1, Z1), (X2, Z2), . . . , (Xn, Zn) ,

where each Zi = k means that Xi is from population k. If the whole data was available

to us, then first note that the joint density is

f(xi, zi = k) = f(xi|zi = k) Pr(Zi = k) .

Suppose D1 = {i : 1 ≤ i ≤ n, zi = 1} and D2 = {i : 1 ≤ i ≤ n, zi = 2}, with cardinality

d! and d2 respectively.. Then the likelihood from the full data is
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⇒ logL = d1 log(π∗) + d2 log(1− π∗) +
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Differentiating with respect to π∗, we get
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This gives that the MLE is
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You can also see that the MLEs for µ1, µ2, σ
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2
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So, if the complete data was available to me, I could easily find the MLE of all the 5

parameters. Unfortunately, the Zs are not available to me, and I have only observed

the Xs. Thus, my likelihood is:

l(µ1, µ2, σ
2
1, σ

2
2, π

∗|X) =
n∑
i=1

log f(xi|µ1, µ2, σ
2
1, σ

2
2, π

∗) =
n∑
i=1

log
∑
k=1,2

f(xi, zi = k|µ1, µ2, σ
2
1, σ

2
2, π

∗) .

The EM algorithm will solve this problem.

The EM Algorithm Suppose, in general, I have a vector of parameters θ, and I have

observed the marginal data X1, . . . , Xn from the complete data (Xi, Zi). The objective

function is to maximize is

l(θ|X) = log

∫
f(x, z|θ)dνz .

The EM algorithm iterates through the following: Consider a starting value θ0. Then

for any k + 1 iteration

1. E-Step: Compute

q(θ; θ(k)) = EZ|y

[
log f(x, z|θ) | Y = y

]
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where the expectation is computed with respect to the conditional distribution

of Z given Y = y for the current iterate θ(k).

2. M-Step: Compute

θk+1 = arg max
θ∈Θ

q(θ; θk) .

Proof of EM algorithm convergence. The EM algorithm works because it is a special

case of the MM algorithm. The objective function is

f(θ) = log f(x|θ) .

The minorizing function is f̃(θ|θ(k) = q(θ|θ(k))+constants. Let

f̃(θ|θ(k)) =

∫
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∫
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Naturally, we can see that at θ = θ(k), f̃(θ|θ(k)) = f(θ(k). We will now show that

minorizing property.
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=
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Thus, f̃(θ|θ(k)) is a minorizing function, and the next iterate is

θ(k+1) = arg max
θ
f̃(θ|θ(k)) = q(θ|θ(k))

Back to the example: To implement the EM algorithm, we first need to find

q(θ|θ(k)). First note that the conditional distribution of Z|X is

Pr(Z = c|X = x) =
fc(x|µc, σ2

c )πc∑
j=1,2 fj(x|µj, σ2

j )πj
.

So for any kth iterate with current step θ(k) = (µ1,k, µ2,k, σ
2
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2
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∗
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Pr(Z = c|X = x, θ(k)) =
fc(x|µc,k, σ2
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j=1,2 fj(x|µj,k, σ2
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.

The above can be calculate explicitly for any data points x. So

q(θ|θ(k)) = EZ|x
[
log f(x, z|θ) | X = x, θ(k)

]
= EZ|x

[
n∑
i=1

log f(xi, zi|θ) | X = x, θ(k)

]
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[
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=
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.

This is the E-step. To implement the E-step we need to update

γi,c,k =
fc(xi|µc,k, σ2

c,k)πc,k∑
j=1,2 fj(xi|µj,k, σ2

j,k)πj,k
.

This completes the E-step. We move on to the M-step. To complete the M-step

θ(k+1) = arg max q(θ|θ(k)) .

L(θ) =
n∑
i=1

2∑
c=1

{
log fc(xi|µc, σ2

c ) + log πc
}
γi,c,k
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=
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Taking derivatives and setting to 0, we get For any c,
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For πc note that the optimization requires a constraint, since
∑

c πc = 1. So we will

use Lagrange multipliers. The objective function is

L(θ)− λ

(
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πc − 1

)
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⇒
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c
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⇒πc,(k+1) = πc,(k+1) =
1

n
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i=1

γi,c,k . (3)

Thus equations (1) and (3) provide the iterative updates for the parameters.
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