$$= \prod_{i=1}^{n} f(y_i|\beta, \sigma^2)$$

$$\leq \prod_{i=1}^{n} f(y_i|\hat{\beta}_{MLE}, \hat{\sigma^2}_{MLE}) := M.$$

So an accept-reject sampler is possible to implement. However, we note that the dimensionality of the problem will certainly impede efficiency.

If we are able to implement an accept-reject algorithm, then the inference mechanism is still the same. You obtain samples $X_1, X_2, \dots X_T$ from π and then estimate the posterior mean and upper and lower quantiles.

16.4 Linchpin variable Accept-Reject

As we have discussed plenty of times now, it is difficult to implement AR when the target is high-dimensional or when the upper bound is hard to get. In the first case, a *linchpin variable* trick can be very useful. Suppose the target density is

$$\pi(x,y)$$
.

Then as we have done multiple times before, we can split the joint distribution as the product of conditional times marginal. That is

$$\pi(x,y) = \pi(x|y) \,\pi(y) \,.$$

If X|Y is known in closed form and we can sample from it, then we may try and get marginal samples from y. This is beneficial since the dimension of y is smaller than (x, y). So the algorithm would be

- Generate $Y \sim \pi(y)$
- Generate $X \sim X|Y$
- Output (X, Y).

The variable Y is called the linchpin variable, and $\pi(Y)$ is the target distribution. Let's see an example

Example 41 (Bayesian linear regression). Recall the Bayesian linear regression model. The likelihood is

$$y_1, \ldots, y_n \mid \beta, \sigma^2 \stackrel{iid}{\sim} N(X_i\beta, \sigma^2).$$

The parameters of interest are β and σ^2 , just like regular MLE. We assume priors:

$$\beta \sim N_p(0, \sigma^2)$$
 and $\sigma^2 \sim IG(a, b)$,

We know that the posterior distribution is

$$\pi(\beta, \sigma^2 | y) = (\sigma^2)^{-n/2 - p/2 - a - 1} \exp\left\{-\frac{(y - X\beta)^T (y - X\beta)}{2\sigma^2} - \frac{\beta^T \beta}{2\sigma^2} - \frac{b}{\sigma^2}\right\}$$

First, note that we prefer σ^2 to be the linchpin variable since it is univariate, and β is p-variate. So we need to find the distribution $\beta|\sigma^2$ and the marginal distribution of σ^2 . Let $A = (X^TX + I)$.

$$\begin{split} &\int \pi(\beta, \sigma^2 | y) d\beta \\ &= \int \left(\sigma^2\right)^{-n/2 - p/2 - a - 1} \exp\left\{-\frac{y^T y - 2\beta^T X^T y + \beta^T X^T X \beta}{2\sigma^2} - \frac{\beta^T \beta}{2\sigma^2} - \frac{b}{\sigma^2}\right\} d\beta \\ &= \left(\sigma^2\right)^{-n/2 - p/2 - a - 1} \exp\left\{-\frac{y^T y}{2\sigma^2} - \frac{b}{\sigma^2}\right\} \int \exp\left\{-\frac{\beta^T X^T X \beta - 2\beta^T X^T y}{2\sigma^2} - \frac{\beta^T \beta}{2\sigma^2}\right\} d\beta \\ &= \left(\sigma^2\right)^{-n/2 - p/2 - a - 1} \exp\left\{-\frac{y^T y}{2\sigma^2} - \frac{b}{\sigma^2}\right\} \int \exp\left\{-\frac{\beta^T (X^T X + I)\beta - 2\beta^T X^T y}{2\sigma^2}\right\} d\beta \\ &= \left(\sigma^2\right)^{-n/2 - p/2 - a - 1} \exp\left\{-\frac{y^T y}{2\sigma^2} - \frac{b}{\sigma^2}\right\} \int \exp\left\{-\frac{\beta^T A \beta - 2\beta^T A A^{-1} X^T y}{2\sigma^2} - \frac{(A^{-1} X^T y)^T A (A^{-1} X^T y)}{2\sigma^2}\right\} d\beta \\ &= \left(\sigma^2\right)^{-n/2 - p/2 - a - 1} \exp\left\{-\frac{y^T y}{2\sigma^2} - \frac{b}{\sigma^2} + \frac{y^T X A^{-1} A A^{-1} X^T y}{2\sigma^2}\right\} \\ &= \times \int \exp\left\{-\frac{\beta^T A \beta - 2\beta^T A A^{-1} X^T y + y^T X A^{-1} A A^{-1} X^T y}{2\sigma^2}\right\} \int \exp\left\{-\frac{(\beta - A^{-1} X^T y)^T A (\beta - A^{-1} X^T y)}{2\sigma^2}\right\} \\ &= \left(\sigma^2\right)^{-n/2 - p/2 - a - 1} \exp\left\{-\frac{y^T y}{2\sigma^2} - \frac{b}{\sigma^2} + \frac{y^T X A^{-1} X^T y}{2\sigma^2}\right\} \int \exp\left\{-\frac{(\beta - A^{-1} X^T y)^T A (\beta - A^{-1} X^T y)}{2\sigma^2}\right\} \end{split}$$

So $\beta | \sigma^2$ is a multivariate normal distribution

$$\beta | \sigma^2 \sim N_p \left(A^{-1} X^T y, \sigma^2 A^{-1} \right)$$
,

and the integral integrates to a known constant.

$$\int \pi(\beta, \sigma^2 | y) d\beta \propto \left(\sigma^2\right)^{-n/2 - p/2 - a - 1} \exp\left\{-\frac{y^T (I - XA^{-1}X^T)y}{2\sigma^2} - \frac{b}{\sigma^2}\right\} \cdot \left(\sigma^2\right)^{p/2} \det(A)^{p/2}$$

$$\propto \left(\sigma^2\right)^{-n/2 - a - 1} \exp\left\{-\frac{y^T (I - XA^{-1}X^T)y}{2\sigma^2} - \frac{b}{\sigma^2}\right\}.$$

So the marginal distribution of $\sigma^2|y|$ is

$$\sigma^{2}|y \sim IG\left(\frac{n}{2} + a, \frac{y^{T}(I - XA^{-1}X^{T})y}{2} + b\right)$$
.

Thus, we can estimate marginal means and quantiles of σ^2 . But to estimate β , we do the following

- 1. Generate $\sigma^2 \sim IG$ as indicated above
- 2. Generate $\beta | \sigma^2 \sim Normal \ distribution \ as \ indicated \ above.$
- 3. (β, σ^2) is one draw from the posterior. Repeat for many draws, and estimate posterior mean and quantiles.

Example 42 (Weibull - Gamma). Consider a Bayesian reliability model, where the observed failure times of a lamp is distributed a s

$$T_1, \ldots, T_n \mid \lambda, \beta \sim Weibull(\lambda, \beta)$$
.

We assume priors

$$\beta \sim Gamma(a_0, b_0)$$
 and $\lambda \sim Gamma(a_1, b_1)$.

We are interested in the posterior distribution of (λ, β) .

$$\pi(\beta, \lambda | t) \propto \pi(\beta) \pi(\lambda) \prod_{i=1}^{n} f(T_i | \beta, \lambda)$$

$$= \beta^{a_0 - 1} \exp\left\{-b_0 \beta\right\} \cdot \lambda^{a_1 - 1} \exp\left\{-b_1 \lambda\right\} \prod_{i=1}^{n} \lambda \beta (t_i)^{\beta - 1} \exp\left\{-\lambda t_i^{\beta}\right\}$$

$$= \beta^{n + a_0 - 1} \exp\left\{-b_0 \beta\right\} \left[\prod_{i=1}^{n} t_i\right]^{\beta - 1} \lambda^{n + a_1 - 1} \exp\left\{-\lambda (b_1 + \sum_{i} t_i^{\beta})\right\}.$$

Note that $\lambda | t \sim Gamma(n + a_1, (b_1 + \sum_i t_i^{\beta}))$. So

$$\int \pi(\beta, \lambda | t) d\lambda$$

$$\propto \beta^{n+a_0-1} \exp\left\{-b_0\beta\right\} \left[\prod_{i=1}^n t_i\right]^{\beta-1} \int \lambda^{n+a_1-1} \exp\left\{-\lambda \sum_i t_i^{\beta}\right\} d\lambda$$

$$\propto \beta^{n+a_0-1} \exp\left\{-b_0\beta\right\} \left[\prod_{i=1}^n t_i\right]^{\beta-1}$$

$$\times \int \frac{\Gamma(n+a_1)}{(b_1 + \sum_i t_i^{\beta})^{n+a_1}} \frac{(b_1 + \sum_i t_i^{\beta})^{n+a_1}}{\Gamma(n+a_1)} \lambda^{n+a_1-1} \exp\left\{-\lambda (b_1 + \sum_i t_i^{\beta})\right\} d\lambda$$

$$\propto \beta^{n+a_0-1} \exp\left\{-b_0\beta\right\} \left[\prod_{i=1}^n t_i\right]^{\beta-1} (b_1 + \sum_i t_i^{\beta})^{-(n+a_1)}$$

So, we have that the marginal distribution of $\beta \mid T$ is

$$f(\beta|T) \propto \beta^{n+\alpha_{\beta}-1} e^{-\beta\theta_{\beta}} \left[\prod_{i=1}^{n} t_{i}^{\beta-1} \right] \left(\theta_{\lambda} + \sum_{i=1}^{n} t_{i}^{\beta} \right)^{-(n+\alpha_{\lambda})}$$
.

We want to find an appropriate proposal distribution to implement an accept-reject sampler. First we will do some algebra tricks: Note that

$$\left[\prod t_i\right]^{\beta-1} = \exp\left\{(\beta - 1)\log\left(\prod t_i\right)\right\} = \exp\left\{\beta\sum\log t_i\right\}\exp\left\{-\sum\log t_i\right\}.$$

Also,

$$\theta_{\lambda} + \sum_{i} t_{i}^{\beta} \ge \sum_{i} t_{i}^{\beta} \ge n \min_{i} \{t_{i}^{\beta}\} = n \left(\min_{i} \{t_{i}\}\right)^{\beta} := n m_{t}^{\beta}$$

$$\Rightarrow \left(\theta_{\lambda} + \sum_{i} t_{i}^{\beta}\right)^{-(n+\alpha_{\lambda})} \le n^{-(n+\alpha_{\lambda})} m_{t}^{-\beta(n+\alpha_{\lambda})} = n^{-(n+\alpha_{\lambda})} \exp\left\{-\beta(n+\alpha_{\lambda}) \log m_{t}\right\}.$$

Using these two tricks, we get,

$$f(\beta|T) \propto \beta^{n+\alpha_{\beta}-1} e^{-\beta\theta_{\beta}} \left[\prod_{i=1}^{n} t_{i}^{\beta-1} \right] \left(\theta_{\lambda} + \sum_{i=1}^{n} t_{i}^{\beta} \right)^{-(n+\alpha_{\lambda})}$$

$$= \beta^{n+\alpha_{\beta}-1} e^{-\beta\theta_{\beta}} \exp\left\{ \beta \sum_{i=1}^{n} \log t_{i} \right\} \exp\left\{ -\sum_{i=1}^{n} \log t_{i} \right\} \left(\theta_{\lambda} + \sum_{i=1}^{n} t_{i}^{\beta} \right)^{-(n+\alpha_{\lambda})}$$

$$\leq \beta^{n+\alpha_{\beta}-1} e^{-\beta\theta_{\beta}} \exp\left\{ \beta \sum_{i=1}^{n} \log t_{i} \right\} \exp\left\{ -\sum_{i=1}^{n} \log t_{i} \right\} n^{-(n+\alpha_{\lambda})} \exp\left\{ -\beta(n+\alpha_{\lambda}) \log m_{t} \right\}$$

$$= \exp\left\{-\sum \log t_i\right\} n^{-(n+\alpha_\lambda)} \beta^{n+\alpha_\beta-1} \exp\left\{-\beta \left(\theta_\beta + (n+\alpha_\lambda) \log m_t - \sum \log t_i\right)\right\}.$$

As long as $\theta_{\beta} + (n + \alpha_{\lambda}) \log m_t - \sum \log t_i > 0$, the right hand side above is a proper density of a Gamma distribution, which can be your proposal distribution. So that

$$\frac{\tilde{\pi}(\beta|t)}{\tilde{g}(\beta)} \le \exp\left\{-\sum \log t_i\right\}.$$

Example 43 (Bayesian hierarchical models). Consider a Bayesian hierarchical model

$$Y_i \mid \theta_i \stackrel{ind}{\sim} N(\theta_i, a_0)$$

Each observation has it's own mean

$$\theta_i \mid \mu, \lambda \sim N(\mu, \lambda)$$

Such models are used when each observation can potentially have a completely different mean. This model has been useful for baseball data batting averages. The priors are

$$\lambda \sim IG(b_0, c_0)$$
 and $f(\mu) \propto 1$

The posterior distribution is

$$\pi(\theta, \mu, \lambda | y) \propto \pi(\theta, \mu, \lambda) \prod_{i=1}^{n} f(y_i | \theta_i, \mu, \lambda)$$

$$= \pi(\mu) \pi(\lambda) \prod_{i=1}^{n} f(y_i | \theta_i, \mu, \lambda) \pi(\theta_i | \mu, \lambda)$$

$$= \lambda^{-n/2} \exp \left\{ -\frac{\sum_{i=1}^{n} (\theta_i - \mu)^2}{2\lambda} - \frac{\sum_{i=1}^{n} (y_i - \theta_i)^2}{2a_0} \right\} \lambda^{b_0 - 1} e^{-c_0/\lambda}.$$

We will use a linchpin variable sampler with linchpin variable λ . Specifically, we will decompose

$$\pi(\theta, \mu, \lambda | y) = \pi(\theta, \mu | \lambda, y) \, \pi(\lambda | y) \, .$$

Do we know $\pi(\theta, \mu | \lambda, y)$? Well we will decompose

$$\pi(\theta, \mu | \lambda, y) = \pi(\theta | \mu, \lambda, y) \pi(\mu | \lambda, y)$$
.

Similar to the Bayesian linear regression example, we can obtain that

$$\theta_i | \mu, \lambda, y \stackrel{ind}{\sim} N\left(\frac{\lambda y_i + a\mu}{\lambda + a}, \frac{a\lambda}{\lambda + a}\right)$$

$$\mu | \lambda, y \sim N\left(\frac{1}{n} \sum_{i=1}^n y_i, \frac{\lambda + a}{n}\right)$$

We also get

$$\pi(\lambda|y) \propto \frac{1}{\lambda^{b_0+1}(\lambda+a_0)^{(n-1)/2}} \exp\left\{-\frac{c_0}{\lambda} - \frac{s^2}{2(\lambda+a_0)}\right\}$$

where

$$s^2 = \sum_{i=1}^n (y_i - \bar{y})^2.$$

We need to implement accept-reject to sample from $\pi(\lambda|y)$. Consider proposal distribution to be $IG(b_0, c_0)$. Then

$$\frac{\tilde{\pi}(\lambda|y)}{g(\lambda)} = \frac{1}{g(\lambda)\lambda^{b_0+1}(\lambda+a_0)^{(n-1)/2}} \exp\left\{-\frac{c_0}{\lambda} - \frac{s^2}{2(\lambda+a_0)}\right\}$$
$$= \frac{1}{(\lambda+a_0)^{(n-1)/2}} \exp\left\{-\frac{s^2}{2(\lambda+a_0)}\right\}$$

The maximum for the above ratio occurs at

$$\hat{\lambda} = \max\left\{0, \frac{s^2}{n-1} - a_0\right\}$$

So plug it back into $\tilde{\pi}/g$ and obtain M, and implement accept-reject.

17 Importance Sampling

17.1 Basic/simple importance sampling

Suppose we are interested in estimating the expectation of a function h with respect to a distribution with density π (known fully). That is, we want to estimate

$$\theta = \int_{\mathbf{X}} h(x)\pi(x) \, dx \, .$$