n

- Hf<y2|ﬁvo-2)

< Hf(yi’BMLEaOfQMLE) =M.

i=1

So an accept-reject sampler is possible to implement. However, we note that the di-

mensionality of the problem will certainly impede efficiency.

If we are able to implement an accept-reject algorithm, then the inference mechanism
is still the same. You obtain samples X, Xs,...Xr from 7 and then estimate the

posterior mean and upper and lower quantiles.

16.4 Linchpin variable Accept-Reject

As we have discussed plenty of times now, it is difficult to implement AR when the
target is high-dimensional or when the upper bound is hard to get. In the first case, a

linchpin variable trick can be very useful. Suppose the target density is

m(z,y).

Then as we have done multiple times before, we can split the joint distribution as the

product of conditional times marginal. That is

m(z,y) = m(zly) =(y).

If X|Y is known in closed form and we can sample from it, then we may try and get
marginal samples from y. This is beneficial since the dimension of y is smaller than

(x,y). So the algorithm would be
e Generate Y ~ 7(y)
e Generate X ~ X|Y
e Output (X,Y).

The variable Y is called the linchpin variable, and 7(Y") is the target distribution. Let’s
see an example

Example 41 (Bayesian linear regression). Recall the Bayesian linear regression model.
The likelihood 1s

iid
ylv"'ayn|5702N (Xiﬁvoj)'
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The parameters of interest are B and o2, just like reqular MLE. We assume priors:
B~ Ny(0,0°) and o*~ IG(a,b),

We know that the posterior distribution is

r(Bucly) = (o) e { SR XD D

202 202 o2

First, note that we prefer o to be the linchpin variable since it is univariate, and 3 is
p-variate. So we need to find the distribution 3|c? and the marginal distribution of .
Let A= (XTX +1).

[ 75 0%w)as
/ (02) 2 o {_yTy —28"XTy+ BTXTXB  BTB b } 4

202 202 o2
T T T T T T
9\ —n/2-p/2—a—1 y'y b BEXTXE -2 X"y [
= () {5t} oo - “ 2
T T(yT T T
. 2\ —n/2—p/2—a—1 __y _ i _5 (X X + I)ﬁ — 25 X Yy
— (a ) exp{ 5o UQ}/exp{ 57 g
_ (0_2)—n/2—p/2—a—1 ox _yT_y . i /eX o BTAB — ZBTAA_lXTy
b 202 o2 P 202
B Y B Y B Yy a Yy
ATTXTNTAALXT ATTXTNTAATLXT
— 5 + 5 dps
20 20
T Ty A-1AA-1vT
_/ _9\-n/2-p/2—a-1 _M_i y XATTAAT Xy
= () exp{ 202 o2 202
B x/ BTAB —2BTAATIXTy +yT XA TAAIX Ty
= exp 57
/21 /2—a— T b TXA-IXT —AIXTNTAB — ALXT
() e [ VY DY Y1 [ exp (B y) A(B y)
202 o2 202 202

So B|o? is a multivariate normal distribution

Blo* ~ N, (A_IXTy, UQA_I) ,
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and the integral integrates to a known constant.

/7_(_(/670_2|y)dﬁ) ~ <02)7n/27p/27aflexp {_yT(I ~ XA XT)y i} . (02)p/2 det(A)?/2

202 o2
T —1v7T
o yT(I— XA 'XT)y b
XX (0'2) / exXp {— ( 20_2 ) — ; .

So the marginal distribution of o®|y is

T —XA1XT
02]y~[G<g+a,y< )y—i—b).

2

Thus, we can estimate marginal means and quantiles of 0. But to estimate 3, we do

the following
1. Generate 0 ~ IG as indicated above
2. Generate ($|0* ~ Normal distribution as indicated above.

3. (B,0?) is one draw from the posterior. Repeat for many draws, and estimate

posterior mean and quantiles.

Example 42 (Weibull - Gamma). Consider a Bayesian reliability model, where the

observed failure times of a lamp is distributed a s
Ty, ..., T, | A\, B ~ Weibull(X, B) .
We assume priors
B ~ Gammal(ag,by) and A ~ Gamma(ay,by) .

We are interested in the posterior distribution of (A, 3).

CRDESICILION | FIUAERY

_ Baofl exp {—boﬁ} L@l exp {_bl)\} H NG (ti)ﬁ_l exp {—)\tf}
=1

n

-1
= g+t exp {~byB)} [H ti] e oxp {—wn - Zt?)} .
=1 7

Note that At ~ Gamma(n + a1, (b + ), t7)). So

1)



/ (8, A[t)dA
- B-1

oc BT exp {—byf3)} Hti /)\”+“1_1 exp {—)\th} d\
Li=1 | 7
1 8-1

o g exp {=boB)} [ [ [ t:

r by + >, )
X/( (ntai)  (bi+351) )\”+“1—1exp{—/\(bl+ztf)}d>‘

b3, ) T+ an)

x 5n+ao—1 exp{—boﬁ)} [H ti] (bl + th)—(n—km)
1=1 A

So, we have that the marginal distribution of B | T is

F(BIT) o grreste=h [Ht“ CE530 ) R

=1

We want to find an appropriate proposal distribution to implement an accept-reject

sampler. First we will do some algebra tricks: Note that

[Hti]ﬂ_l = exp {(6 —1)log (Htl)} = exp {ﬁZlogti} exp {— Zlogti} )
Also,

B
0y + Zt@ > Ztﬂ >nmin{t’} =n <min{ti}> =nm!

(n+ay)
(9}\ + Ztﬁ’) A) < nf(n+a)\)mt—ﬁ(n+a)\) — (o) exp {_B(n + Oé)\> log mt} '

Using these two tricks, we get,

F(B|T) oc prtos—le=r% [ﬁtf‘l (0 +Ztﬁ> )
=1

= prras—le=h% exp {6 Z log ti} exp {— Z logti} (9,\ + Ztﬁ> e

< prres—le=h% exp {B Z log L‘i} exp { Z log ¢; } “ter) exp {—B(n + o) log my}
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= exp{ Zlogt } —(ntan) grtap— 1exp{ 1G] <95 + (n + ay) logm,; — Zlogu)} )

As long as 0g + (n + a) logmy — > logt; > 0, the right hand side above is a proper

density of a Gamma distribution, which can be your proposal distribution. So that

Example 43 (Bayesian hierarchical models). Consider a Bayesian hierarchical model
Y; | 6; " N(6;, a0)

Each observation has it’s own mean
Oi | i, A~ N(p, A)

Such models are used when each observation can potentially have a completely different

mean. This model has been useful for baseball data batting averages. The priors are
A~ IG(by,co) and f(p) x 1

The posterior distribution is

(0, 11, Aly) o< (0, 11, \) H (i | 0, 11, \)

H i | 0, 11, \) (012, V)
_ )\—n/2 exp {_211(91 — ) o Z?:l(yi — 01)2} )\bo—le—co/A ‘

2\ 2&0

We will use a linchpin variable sampler with linchpin variable X. Specifically, we will

decompose
(0, 1, Aly) = 70, ulA, y) T(Aly) -

Do we know (0, u|\,y)? Well we will decompose

(0, p A y) = 70, A, y)m(plA,y) .
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Similar to the Bayesian linear regression example, we can obtain that

ind Ay +ap ad
61|M7/\7yNN< /\+a 7)\+a)

] — A+a
Ay~ N (137, A0
A,y (nz;y - )

We also get

where

We need to implement accept-reject to sample from w(A|y). Consider proposal distri-
bution to be IG(by, co). Then

7(\y) 1 . co 52
f— X e —
g gOONTI(N + ag)m 72 P

B 1 52
T O+ ag)m D2 “PUT 2N T ap)

The maximum for the above ratio occurs at

~ 82
/\:max{(), —CL()}
n—1

So plug it back into 7/g and obtain M, and implement accept-reject.

17 Importance Sampling

17.1 Basic/simple importance sampling

Suppose we are interested in estimating the expectation of a function h with respect

to a distribution with density 7 (known fully). That is, we want to estimate

0= /Xh(x)w(m) dz .
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