
MTH 511a - 2020: Lecture 23

Instructor: Dootika Vats

The instructor of this course owns the copyright of all the course materials. This lecture

material was distributed only to the students attending the course MTH511a: “Statistical

Simulation and Data Analysis” of IIT Kanpur, and should not be distributed in print or

through electronic media without the consent of the instructor. Students can make their own

copies of the course materials for their use.

1 Stochastic optimization methods

We go back to optimization this week. The reason we took a break from optimization is
because we will focus on stochastic optimization methods, which will lead the discussion
into other stochastic methods.

We will cover two topics:

1. Stochastic gradient ascent

2. Simulated annealing

Our goal is the same as before: for an objective function f(θ), our goal is to find

θ∗ = arg max
θ
f(θ) .

1.1 Stochastic gradient ascent

Recall, in order to maximize the objective function the gradient ascent algorithm does
the following update:

θ(k+1) = θ(k) + t∇f(θ(k)) ,

where ∇f(θ(k)) is the gradient vector. Now, since in many statistics problems, the

objective function is the log-likelihood (for some density f̃),

f(θ) =
1

n

n∑
i=1

n log f̃(θ|xi)⇒ ∇f(θ) =
1

n

n∑
i=1

∇
[
n log f̃(θ|xi)

]
.

That is, in order to implement a gradient ascent step, the gradient of the log-likelihood
is calculated for the whole data. However, consider the following two situations

1

• the data size n and/or dimension of θ are prohibitively large so that calculating
the full gradient multiple times is infeasible

• the data is not available at once! In many online data situations, the full data set
is not available, but comes in sequentially. Then, the full data gradient vector is
not available.

In such situations, when the full gradient vector is unavailable, our goal is to estimate
the gradient. Suppose ik is a randomly chosen index in {1, . . . , n}. Then

E
[
∇
[
n log f̃(θ|xik)

]]
=

1

n

n∑
i=1

[
n∇ log f̃(θ|xi)

]
.

Thus, ∇n log
[
f̃(θ|xik)

]
is an unbiased estimator of the complete gradient, but uses

only one data point. Replacing the complete gradient with this estimate yields the
stochastic gradient ascent update:

θ(k+1) = θ(k) + t
[
∇
[
n log f̃(θ(k)|xik)

]]
,

where ik is a randomly chosen index. This randomness in choosing the index makes
this a stochastic algorithm.

• advantage: it is much cheaper to implement since only one-data point is required
for gradient evaluation

• disadvantage it may require larger k for convergence to the optimal solution

• disadvantage as k increases, θ(k+1) 6→ θ∗. Rather, after some initial steps, θ(k+1)

oscillates around θ∗.

After K iterations, the final estimate of θ∗ is

θ̂∗ =
1

K

K∑
k=1

θ(k+1) .

However, since each step involves evaluating only data gradient, variability in subse-
quent updates of θ(k+) increases. To stabilize this behavior, often mini-batch stochas-
tic gradient is used.

2

1.1.1 Mini-batch stochastic gradient ascent

Let Ik be a random subset of {1, . . . , n} of size b. Then, the mini-batch stochastic
gradient ascent algorithm implements the following update:

θ(k+1) = θ(k) + t

[
1

b

∑
i∈Ik

∇
[
n log f̃(θ(k)|xi)

]]
.

The mini-batch stochastic gradient estimate of θ∗ after K updates is

θ̂∗ =
1

K

K∑
k=1

θ(k) .

There are not a lot of clear rules about terminating the algorithm in stochastic gra-
dient. Typically, the number of iterations K = n, so that one full pass at the data is
implemented.

1.1.2 Logistic regression

Recall the logistic regression setup where for a response Y and a covariate matrix X,

Yi ∼ Bern

(
ex

T
i β

1 + ex
T
i β

)
.

In order to find the MLE for β, we obtain the log-likelihood.

L(β|Y) =
n∏
i=1

(pi)
yi (1− pi)1−yi

⇒ n log f̃(β) = −n
n∑
i=1

log
(
1 + exp(xTi β)

)
+ n

n∑
i=1

yix
T
i β

Taking derivative:

∇
[
n log f̃(β)

]
= n

n∑
i=1

xi

[
yi −

ex
T
i β

1 + ex
T
i β

]
.

As noted earlier, the target objective is concave, thus a global optima exists and the
gradient ascent algorithm will converge to the MLE. We will implement the stochastic
gradient ascent algorithm here.

3

##

MLE for logistic regression

Using stochastic gradient ascent

##

f.gradient <- function(y, X, beta)

{

n <- dim(X)[1]

beta <- matrix(beta, ncol = 1)

pi <- exp(X %*% beta) / (1 + exp(X%*%beta))

rtn <- colSums(X* as.numeric(y - pi))

return(n*rtn)

}

###

The following is a general function that

implements the regular gradient ascent

the stochastic gradient ascent and

mini-batch stochastic gradient ascent

###

SGA <- function(y, X, batch.size = dim(X)[1], t = .1, max.iter = dim(X)[1],

adapt = FALSE)

{

p <- dim(X)[2]

n <- dim(X)[1]

create the mini-batches

permutation <- sample(1:n, replace = FALSE)

K <- floor(n/batch.size)

batch.index <- split(permutation, rep(1:K, length = n, each = n/K))

index for choosing the mini-batch

count <- 1

beta_k <- rep(0, p) # start at all 0s

track.gradient <- matrix(0, nrow = max.iter, ncol = p)

track.gradient[1,] <- f.gradient(y = y, X= X, beta = beta_k)

saving the running mean of the estimates of theta^*

mean_beta <- rep(0,p)

tk: in case we want t_k

tk <- t

ideally, we will have a while loop here, but

I have written this to always complete some max.iter steps

4

for(iter in 1:max.iter)

{

count <- count+1

if(adapt) tk <- t/(sqrt(iter)) # in case t_k

if(count %% K == 0) count <- count%%K +1 # when all batches finish,

restart the batches

if(iter %% (max.iter/10) == 0) print(iter) #feedback

batch of data

y.batch <- y[batch.index[[count]]]

X.batch <- matrix(X[batch.index[[count]],], nrow = batch.size)

SGA step

beta_k = beta_k + tk* f.gradient(y = y.batch, X = X.batch, beta =

beta_k)/batch.size

saving overall estimates and running gradients for demonstration

mean_beta <- (beta_k + mean_beta*(iter - 1))/(iter)

if(batch.size == n)

{

est <- beta_k

}else{

est <- mean_beta

}

track.gradient[iter,] <- f.gradient(y = y, X = X, beta = est)/n

}

rtn <- list("iter" = iter, "est" = est, "grad" = track.gradient[1:iter,])

return(rtn)

}

Next, I will generate data from the logistic regression model in order to demonstrate
the performance of the stochastic gradient ascent algorithm.

Generating data for demonstration

set.seed(10)

p <- 5

n <- 1e4

X <- matrix(rnorm(n*(p-1)), nrow = n, ncol = p-1)

X <- cbind(1, X)

beta <- matrix(rnorm(p, 0, sd = 1), ncol = 1)

p <- exp(X %*% beta)/(1 + exp(X%*%beta))

y <- rbinom(n, size = 1, prob = p)

We implement the stochastic gradient ascent algorithm and keep a track of the running
average of the estimate of θ∗: θ̂∗k and track the value of the complete gradient at that

5

value ‖∇f(θ̂∗k. A running plot of these should tend to 0 as k increases. We will
implement the original gradient ascent, stochastic gradient ascent, and mini-batch
gradient ascent algorithm.

I first run this for tuned values of t.

Tuned value of t

ga <- SGA(y, X, batch.size = 1e4, t = .0015, max.iter = 1e3)

b1 <- SGA(y, X, batch.size = 1, t = .1, max.iter = ga$iter)

b10 <- SGA(y, X, batch.size = 10, t = .1, max.iter = ga$iter)

b100 <- SGA(y, X, batch.size = 100, t = .1, max.iter = ga$iter)

index <- 1:500

plot(apply(ga$grad[index,], 1, function(t) sum(abs(t))), type = ’l’, ylim =

c(0,max(apply(b1$grad[,], 1, function(t) sum(abs(t))))), ylab =

"Complete gradient")

lines(apply(b1$grad[index,], 1, function(t) sum(abs(t))), col = "red")

lines(apply(b10$grad[index,], 1, function(t) sum(abs(t))), col = "blue")

lines(apply(b100$grad[index,], 1, function(t) sum(abs(t))), col = "orange")

legend("topright", col = c("black", "red", "blue", "orange"), legend =

c("GA", "SGA", "MB-SGA-10", "MB-SGA-100"), lty = 1)

0 100 200 300 400 500

0
20

00
40

00
60

00

Index

C
om

pl
et

e
gr

ad
ie

nt

GA
SGA
MB−SGA−10
MB−SGA−100

We see that the original stochastic gradient ascent algorithm is slow to converge al-
though it is the cheapest. The mini-batches are far more stable.

Next, we repeat the same algorithm with different choices of t. These chosen choices of
t are too large so that all the algorithm no longer perform well and essentially oscillate

6

locally.

all bad values of t

ga <- SGA(y, X, batch.size = n, t = .005, max.iter = 1e3)

b1 <- SGA(y, X, batch.size = 1, t = 1, max.iter = ga$iter)

b10 <- SGA(y, X, batch.size = 10, t = 1, max.iter = ga$iter)

b100 <- SGA(y, X, batch.size = 100, t = 1, max.iter = ga$iter)

index <- 1:1000

plot(apply(ga$grad[index,], 1, function(t) sum(abs(t))), type = ’l’, ylim =

c(0,max(apply(b1$grad[,], 1, function(t) sum(abs(t))))), ylab =

"Complete gradient")

lines(apply(b1$grad[index,], 1, function(t) sum(abs(t))), col = "red")

lines(apply(b10$grad[index,], 1, function(t) sum(abs(t))), col = "blue")

lines(apply(b100$grad[index,], 1, function(t) sum(abs(t))), col = "orange")

legend("topright", col = c("black", "red", "blue", "orange"), legend =

c("GA", "SGA", "MB-SGA-10", "MB-SGA-100"), lty = 1)

0 200 400 600 800 1000

0
20

00
40

00
60

00
80

00

Index

C
om

pl
et

e
gr

ad
ie

nt

GA
SGA
MB−SGA−10
MB−SGA−100

The original gradient ascent algorithm oscillates drastically. The stochastic versions
seem to be converging away from 0 as well. Thus, the value of t is critical to imple-
menting the (stochastic) gradient ascent algorithms in a stable way.

Note that the oscillations occurs due to a large value of t. But which value of t which
be large and which will be small is difficult to assess in the beginning. It is thus useful
to choose a decreasing sequence tk that reduces the step size and avoids long durations
of getting stuck in an oscillation. Here we will use tk = t/ log(k).

7

ga <- SGA(y, X, batch.size = n, t = .05, max.iter = 1e3, adapt = TRUE)

b1 <- SGA(y, X, batch.size = 1, t = 1, max.iter = ga$iter, adapt = TRUE)

b10 <- SGA(y, X, batch.size = 10, t = 1, max.iter = ga$iter, adapt = TRUE)

b100 <- SGA(y, X, batch.size = 100, t = 1, max.iter = ga$iter, adapt = TRUE)

index <- 1:1000

plot(apply(ga$grad[index,], 1, function(t) sum(abs(t))), type = ’l’, ylim =

c(0,max(apply(b1$grad[,], 1, function(t) sum(abs(t))))), ylab =

"Complete gradient")

lines(apply(b1$grad[index,], 1, function(t) sum(abs(t))), col = "red")

lines(apply(b10$grad[index,], 1, function(t) sum(abs(t))), col = "blue")

lines(apply(b100$grad[index,], 1, function(t) sum(abs(t))), col = "orange")

legend("topright", col = c("black", "red", "blue", "orange"), legend =

c("GA", "SGA", "MB-SGA-10", "MB-SGA-100"), lty = 1)

0 200 400 600 800 1000

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

Index

C
om

pl
et

e
gr

ad
ie

nt

GA
SGA
MB−SGA−10
MB−SGA−100

Note here that although the algorithm begins oscillate, due to decreasing step-sizes,
the algorithm escapes out of local oscillations.

2 Questions to think about

1. Can we change tk adaptively as the algorithm goes along?

2. Try and implement a stochastic Newton-Raphson algorithm following the same

8

lines of reasoning as discussed here.

9

