
MTH 511a - 2020: Lecture 24

Instructor: Dootika Vats

The instructor of this course owns the copyright of all the course materials. This lecture

material was distributed only to the students attending the course MTH511a: “Statistical

Simulation and Data Analysis” of IIT Kanpur, and should not be distributed in print or

through electronic media without the consent of the instructor. Students can make their own

copies of the course materials for their use.

1 Stochastic optimization methods

Last lecture we went over the stochastic gradient ascent algorithm: the merit of this
algorithm was its use in online sequential data and for large data set problem.

This lecture focuses on simulated annealing, an algorithm particularly useful for non-
concave objective functions. Our goal is the same as before: for an objective function
f(θ), our goal is to find

θ∗ = arg max
θ
f(θ) .

1.1 Simulated annealing

Recall that when the objective function is non-concave, all of the methods we’ve dis-
cussed cannot escape out of a local maxima. This creates challenges in obtaining global
maximas. This is where the method of simulated annealing has an advantage over other
methods.

Consider an objective function f(θ) to maximize. Note that maximizing f(θ) is equiv-
alent to maximizing exp(f(θ)). The idea in simulated annealing is that, instead of
trying to find a maxima directly, we will obtain samples from the density

π(θ) ∝ exp(f(θ)) .

Wherever there is a maxima, samples collected from π(x) are likely to be from areas
near the maximas. However, obtaining samples from π(x) means there will be samples
from low probability areas as well. So how do we force samples to come from areas
near the maximas?

1

Consider for T > 0,
∂ef(θ)/T

dθ
= ef(θ)/T

f ′(θ)

T
,

which has the same roots and direction as f(θ). Thus,

arg max
θ
f(θ) = arg max

θ
e{f(θ)/T} .

For 0 < T < 1, the objective function’s modes are exaggerated there-by amplifying the
maximas.

Example 1. Consider the following objective function

f(θ) = [cos(50θ) + sin(20θ)]2 I(0 < θ < 1)

Below is a plot of ef(θ)/T for various values of T .

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

x

ex
p(

f/T
)

T = 1
T = .83
T = .75
T = .71

In simulated annealing, this feature is utilized so that every subsequent sample is drawn
from an increasingly concentrated distribution. That is, at a time point k, a sample
will be drawn from

πk,T (θ) ∝ ef(θ)/Tk .

How do we generate these samples?

Certainly, we can try and use accept-reject or another Monte Carlo sampling method,
but such methods cannot be implemented generally.

2

Note that for any θ′, θ
πk,T (θ′)

πk,T (θ)
= exp

{
f(θ′)− f(θ)

Tk

}
.

Let G be a proposal distribution with density g(θ′|θ) so that g(θ′|θ) = g(θ|θ′). Such a
proposal distribution is a symmetric proposal distribution.

Algorithm 1 Simulated Annealing algorithm

1: For k = 1, . . . , N , repeat the following:

2: Generate θ′ ∼ G(·|θk) and generate U ∼ U(0, 1)

3: Let α = min

{
1, exp

{
f(θ′)− f(θ)

Tk

}}
.

4: If U < α, then let θk+1 = θ′

5: Else θk+1 = θk.

6: Update Tk+1

7: Store θk+1 and ef(θk+1).

8: Return θ∗ = θk∗ where k∗ is such that k∗ = arg maxk e
f(θk+1)

Thus, if the proposed value is such that f(θ′) > f(θ), then α = 1 and the move is
always accepted. The reason simulated annealing works is because when θ′ is such
that f(θ′) < f(θ), even then, the move is accepted with probability α. Thus, there is
always a chance to move out of local maximas.

Essentially, each θk is approximately distributed as πk,T , and as Tk → 0, πk,T puts more
and more mass on the maximas, thus, θk will typically be get increasingly closer to θ∗.

• Typically, G(·|θ) is U(θ − r, θ + r) or N(θ, r) which are both valid symmetrical
proposals. The parameter r dictates how far/close the proposed values will be.

• Tk is often called the temperature parameter. A common value of Tk = d/ log(k)
for some constant d.

Example 2 (continued...). We implement the simulated annealing algorithm for:

f(θ) = [cos(50θ) + sin(20θ)]2 I(0 < θ < 1)

The true θ∗ ≈ .379.

#####################################

Simulated Annealing

Demonstrative example

#####################################

fn <- function(x, T = 1)

{

h <- (cos(50*x) + sin(20*x))^2

exp(h/T)* (0 < x & x < 1)

3

}

simAn <- function(N = 10, r = .5)

{

x <- numeric(length = N)

x[1] <- runif(1)

for(k in 2:N)

{

U(x - r, x + r)

a <- runif(1, x[k-1] - r, x[k-1] + r)

T <- 1/(log(k))

ratio <- fn(a,T)/fn(x[k-1], T)

if(runif(1) < ratio)

{

x[k] <- a # accept

} else{

x[k] <- x[k-1] # reject, so stay

}

}

return(x)

}

Below I implement the algorithm for 500 steps and return the estimate of θ∗. I also
plot the values of θ obtained.

N <- 500

sim <- simAn(N = N)

sim[which.max(fn(sim))] # theta^*

[1] 0.3792136

x <- seq(0, 1, length = 5e2)

plot(x, fn(x), type = ’l’)

points(sim, fn(sim), pch = 16, col = 1)

4

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40

x

ex
p(

f/T
)

Example 3 (Location Cauchy). Recall the location Cauchy example discussed in Week
6 Lecture 15. The objective function is the log-likelihood of the location Cauchy
distribution with mode at µ ∈ R. The goal is to find the MLE for µ.

f(x|µ) =
1

π

1

(1 + (x− µ)2)
.

The log-likelihood is

l(µ) := logL(µ|X) = −n log π −
n∑
t=1

log(1 + (Xi − µ)2) .

−10 0 10 20 30 40

−
30

−
25

−
20

−
15

−
10

µ

lo
g−

lik
el

ih
oo

d

Recall that for the dataset generated, the log-likelihood (above) was not concave and
presented many local maxima. This caused Newton-Raphson to possible diverge/con-
verge to minima/local maxima and caused the gradient ascent algorithm to converge

5

to local maxima. We will implement the simulated annealing algorithm here with
G = U(θ − r, θ + r).

Function calculates the exp(like/T)

log.like <- function(mu, X, T = 1)

{

n <- length(X)

rtn <- -n*log(pi) - sum(log(1 + (X - mu)^2))

return(exp(rtn/T))

}

Simulated annealing algorithm

simAn <- function(N = 10, r = .5)

{

x <- numeric(length = N)

x[1] <- runif(1, min = -10, max = 40)

fn.value <- numeric(length = N)

fn.value[1] <- log.like(mu = x[1], X, T = 1)

for(k in 2:N)

{

a <- runif(1, x[k-1] - r, x[k-1] + r)

T <- 1/(1 + log(log(k)))

ratio <- log.like(mu = a, X, T)/log.like(mu = x[k-1], X, T)

if(runif(1) < ratio)

{

x[k] <- a

} else{

x[k] <- x[k-1]

}

fn.value[k] <- log.like(mu = x[k], X, T = 1)

}

x

return(list("x" = x, "fn.value" = fn.value))

}

I run the algorithm for 100 steps from four randomly chosen starting points.

par(mfrow = c(2,2))

Four different runs all converge.

sim <- simAn(N = 1e2, r = 5)

plot(mu.x, ll.est, type = ’l’, ylab = "log-likelihood", xlab =

expression(mu))

points(sim$x, log(sim$fn.value), pch = 16, col = adjustcolor("blue", alpha

= .4))

6

sim <- simAn(N = 1e2, r = 5)

plot(mu.x, ll.est, type = ’l’, ylab = "log-likelihood", xlab =

expression(mu))

points(sim$x, log(sim$fn.value), pch = 16, col = adjustcolor("darkred",

alpha = .4))

sim <- simAn(N = 1e2, r = 5)

plot(mu.x, ll.est, type = ’l’, ylab = "log-likelihood", xlab =

expression(mu))

points(sim$x, log(sim$fn.value), pch = 16, col = adjustcolor("darkgreen",

alpha = .4))

sim <- simAn(N = 1e2, r = 5)

plot(mu.x, ll.est, type = ’l’, ylab = "log-likelihood", xlab =

expression(mu))

points(sim$x, log(sim$fn.value), pch = 16, col = adjustcolor("purple",

alpha = .4))

−10 0 10 20 30 40

−
30

−
25

−
20

−
15

−
10

µ

lo
g−

lik
el

ih
oo

d

−10 0 10 20 30 40

−
30

−
25

−
20

−
15

−
10

µ

lo
g−

lik
el

ih
oo

d

−10 0 10 20 30 40

−
30

−
25

−
20

−
15

−
10

µ

lo
g−

lik
el

ih
oo

d

−10 0 10 20 30 40

−
30

−
25

−
20

−
15

−
10

µ

lo
g−

lik
el

ih
oo

d

7

Note the simulated annealing algorithm is able to escape out of local modes and head
towards the global maxima. However, the above algorithm is implemented only after
tuning r. Tuning r can be challenging.

• Large r: values too far away are proposed where the objective function is very
low. These values will get rejected and the algorithm will not move.

• Small r: values too close are proposed where the change in the objective function
is small. These values are often accepted, but the algorithm makes very tiny
jumps.

Below are runs of the simulated annealing algorithm with r chosen to be too high (500)
and too low (.1).

par(mfrow = c(1,2))

Different values of r

very large r

sim <- simAn(N = 1e3, r = 500)

plot(mu.x, ll.est, type = ’l’, main = "r = 500. Many rejections", ylab =

"log-likelihood", xlab = expression(mu))

points(sim$x, log(sim$fn.value), pch = 16, col = adjustcolor("blue", alpha

= .2))

#very small r

plot(mu.x, ll.est, type = ’l’, main = "r = .1. Many small acceptances",

ylab = "log-likelihood", xlab = expression(mu))

sim <- simAn(N = 1e3, r = .1)

points(sim$x, log(sim$fn.value), pch = 16, col = adjustcolor("blue", alpha

= .2))

−10 0 10 20 30 40

−
30

−
25

−
20

−
15

−
10

r = 500. Many rejections

µ

lo
g−

lik
el

ih
oo

d

−10 0 10 20 30 40

−
30

−
25

−
20

−
15

−
10

r = .1. Many small acceptances

µ

lo
g−

lik
el

ih
oo

d

8

2 Questions to think about

• How do you think this algorithm will scale in higher dimensions? Try implement-
ing simulated annealing for a Lasso optimization problem.

• Is there any benefit to having T > 1?

9

