
MTH 511a - 2020: Lecture 27

Instructor: Dootika Vats

The instructor of this course owns the copyright of all the course materials. This lecture

material was distributed only to the students attending the course MTH511a: “Statistical

Simulation and Data Analysis” of IIT Kanpur, and should not be distributed in print or

through electronic media without the consent of the instructor. Students can make their own

copies of the course materials for their use.

1 Bayesian models

In the last video, we introduced the philosophy of Bayesian modeling and worked
through two popular examples. In both examples, the posterior distributions were
available in closed-form after some algebra tricks.

However, in many situations, the posterior distribution is not easily obtained. Let’s
first see an example.

Example 1 (t-distribution likelihood). Suppose Y1, . . . , Yn|µ ∼ tν(µ), which is the t
distribution with ν degrees of freedom and mean µ. Let’s assume that ν is known.

Consider the prior µ ∼ N(0, 1) on µ. The posterior distribution of µ is,

π(µ | y1, . . . , yn) ∝ π(µ)f(y|µ)

= e−
µ2

2

n∏
i=1

(
Γ(ν + 1/2)√
νπΓ(ν/2)

(
1 +

(yi − µ)2

ν

)− ν+1
2

)

∝ e−
µ2

2

n∏
i=1

(
1 +

(yi − µ)2

ν

)− ν+1
2

.

This does not look like the functional form of any known density. We may be able
to find the MAP estimate using the many optimization techniques that we’ve learned,
however, if we want to find the quantiles and mean of this distribution, it will be further
challenging.

The solution to this problem is sampling and Monte Carlo!

1

Instead of finding the closed form expression of the posterior distribution, we will obtain
samples from this posterior distribution and estimate posterior quantities using Monte
Carlo based estimators.

General sampling framework

We have a target density π(θ|y) whose expectation and quantiles are of interest. Notice
that in the above example, we have a target density whose proportionality constant
we do not know. We are now in the situation where

π(θ|y) = c π̃(θ|y) ,

where c is unknown. We have seen this before in importance sampling. Now we see
when such instances occur!

We will use two methods to estimate quantities of interest.

• Accept-reject sampling

• Markov chain Monte Carlo (MCMC)

In both methods, we will sample values X1, . . . , Xn from π(θ|y) and using sample mean
and sample quantiles, to estimate the posterior mean and credible intervals.

You are already familiar with accept-reject sampling, however, you only known how
to implement it when c is known. Now we will learn how to implement accept-reject
when this constant is unknown.

1.1 Accept-Reject Sampling

Recall that, to implement accept-reject on a given target density, we need to find a
proposal distribution G with density g such that

sup
x∈X

π(x)

g(x)
≤M <∞ .

Since the upper bound, M , is subsequently used in the algorithm, M needs to be known
constant. However, when

π(x) = cπ̃(x) ,

M cannot be known, since c is unknown. Turns out, accept-reject can be used to sample
from a unnormalized distribution as well, however, we lose out on some benefits.

Suppose g(x) is a proposal density such that g(x) = rg̃(x), where r is a known or
unknown constant. Suppose there exists M such that

sup
x∈X

π̃(x)

g̃(x)
≤M .

2

Notice that,

sup
x∈X

π̃(x)

g̃(x)
≤M

⇒ sup
x∈X

mπ̃(x)

rg̃(x)
≤ m

r
M

⇒ sup
x∈X

π(x)

g(x)
≤ m

r
M := M ′

Thus, upper bounding π̃/g̃ by M is similar to upper bounding π/g by the unknown
M ′.

Algorithm 1 Accept-Reject for unknown constants

1: Generate Y ∼ G and generate U ∼ U [0, 1]

2: If U ≤ π̃(y)

Mg̃(y)
, then set X = Y

3: Else, go to step 1.

Then, the usual AR would be accepted if

U ≤ π(x)

M ′g(x)
⇒ U ≤ π̃(x)

Mg̃(x)
.

So they are equivalent. Essentially, we don’t need to know the normalizing constants
for both π and g. However, a significant drawback here is that, the probability of
acceptance of any proposal is still

Pr (Acceptance) =
1

M ′

and since M ′ is unknown, this probability is unknown. Thus, there isn’t any way to
assess how efficient the algorithm will be.

Example 2 (Bayesian t−likelihood). Recall the posterior distribution

π(µ|y) ∝ e−µ
2/2

n∏
t=1

(
1 +

(yi − µ)2

ν

)−(ν+1)/2

Consider the proposal distribution N(0, 1).

π̃(µ)

g̃(µ)
=

e−µ
2/2
∏n

t=1

(
1 +

(yi − µ)2

ν

)−(ν+1)/2

e−µ2/2

=
n∏
t=1

(
1 +

(yi − µ)2

ν

)−(ν+1)/2

3

≤ 1 := M1 .

This is not a tight bound, but an easily available bound. Nonetheless, we can implement
an A-R algorithm, but it is not very efficient.

An alternative is to use µ̂MLE as an upper bound. This we known how to do using
optimization techniques a similar Cauchy example.

π̃(x)

g̃(x)
=

e−µ
2/2
∏n

t=1

(
1 +

(yi − µ)2

ν

)−(ν+1)/2

e−µ2/2

=
n∏
t=1

(
1 +

(yi − µ)2

ν

)−(ν+1)/2

≤
n∏
t=1

(
1 +

(yi − µ̂MLE)2

ν

)−(ν+1)/2

:= M2 .

This will be more efficient, but µ̂MLE needs to be found numerically. Notice that the
bound gets worse when

• the number of data points, n increases

• if the true value of µ is far from 0.

###

Accept-reject to sample from posterior distrbituon

from t likelihood and normal priors

Code takes some time to run

###

library(MASS)

set.seed(10)

#Log posterior

log.post <- function(y, mu, nu)

{

-mu^2/2 - (nu + 1)/2 *sum(log(1 + (y-mu)^2/nu))

}

Accept-reject for a given bound M

AR_tmodel <- function(N = 1e2, M = 1)

{

count <- 0

attempts <- 0

samp <- numeric(length = N)

while(count < N)

{

attempts <- attempts + 1

prop <- rnorm(1)

4

ratio <- log.post(y = y, mu = prop, nu = nu) + prop^2/2 - log(M)

if(exp(ratio) > 1) print(exp(ratio)) # Making sure M is correct

if(runif(1) < exp(ratio))

{

count <- count + 1

samp[count] <- prop

if(count%% (N) == 0) print(paste("Accepted = ",count, ", Accept Prob.

= ", count/attempts))

}

}

return(samp)

}

We will now generate data from a t3 distribution with the true µ = 0 and generate
10000 iid samples from the posterior using the AR with M1 and M2.

Generate the data set.

Small n and mu close to zero (the prior)

nu <- 3

n <- 10

mu <- 0

y <- mu + rt(n, df = nu) # Generate the data

mle <- fitdistr(y, "t", df = 3)$estimate[1] # Find the MLE to construct the

tighter upper bound for pi(x)/g(x)

M2 <- prod((1 + (y - mle)^2/nu))^(-(nu+1)/2) + 1e-5 # adding a little to

remove numerical approximation errors

Run the A-R sampler using the two different upper bounds

system.time(out1 <- AR_tmodel(N = 1e4, M = 1)) # About 50 seconds

#[1] "Accepted = 10000 , Accept Prob. = 0.00146156500580753"

system.time(out2 <- AR_tmodel(N = 1e4, M = M2)) # About .11 seconds

#[1] "Accepted = 10000 , Accept Prob. = 0.37267543696195"

Although the AR algorithms are different, both methods with M1 and M2 will yield
iid samples from the same posterior. We can check the posterior means and quantiles
(for credible intervals) and draw the posterior density estimate plot:

Posterior mean estimates

c(mean(out1), mean(out2))

#[1] 0.06775302 0.06930398

95% credible interval

quantile(out1, c(.025, .975))

2.5% 97.5%

#-0.6487182 0.7868883

5

quantile(out2, c(.025, .975))

2.5% 97.5%

#-0.6534764 0.8166141

Compare the performance

plot(density(rnorm(1e5)), col = "red", type = ’l’, ylim = c(0,1.1), main =

"Prior and Posterior")#prior

lines(density(out1)) # samples posterior 2

lines(density(out2), col = "blue") # sampled posterior 2

legend("topright", legend = c("Prior", "Posterior 1", "Posterior 2"), col =

c("red", "black", "blue"), lty = 1)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prior and Posterior

N = 100000 Bandwidth = 0.08989

D
en

si
ty

Prior
Posterior 1
Posterior 2

We repeat the same but now I increase my data size from n = 10 to n = 20. This small
change will dramatically decrease the acceptance probability for both M1 and M2.

Increase n

n <- 20

y <- mu + rt(n, df = nu) # Generate the data

mle <- fitdistr(y, "t", df = 3)$estimate[1] # Find the MLE to construct the

tighter upper bound for pi(x)/g(x)

M2 <- prod((1 + (y - mle)^2/nu))^(-(nu+1)/2) + 1e-6

Run the A-R sampler using the two different upper bounds

system.time(out1 <- AR_tmodel(N = 1e1, M = 1)) # too slow for even 10

samples

6

[1] "Accepted = 10 , Accept Prob. = 2.39168192161119e-07"

system.time(out2 <- AR_tmodel(N = 1e4, M = M2)) # About .11 seconds

#[1] "Accepted = 10000 , Accept Prob. = 0.128182121157741"

2 Questions to think about

• Repeat the simulation above with the true data generated from µ = 5. How does
the AR change? How does the posterior change?

• How do you think AR will fare for higher dimensional problems?

7

