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In this lecture, we will focus only the Bayesian linear regression model, and discuss
accept-reject algorithms that sample from the posterior.

1 Bayesian linear regression

Consider a Bayesian version of the linear regression model, where prior distributions
are assigned to both the regression coefficient β and the variance, σ2. Recall that the
likelihood is

y = (y1, . . . , yn) | β, σ2 ∼ N(Xβ, σ2In) .

The parameters of interest are β and σ2 and popular prior distributions assume inde-
pendent priors:

β ∼ Np(0, σ
2Ip) and σ2 ∼ Inverse Gamma(a, b) .

Note that the Inverse Gamma distribution has density
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The above is the (p + 1)-dimensional posterior distribution and we want to obtain
samples from this using accept-reject. We already know that accept-reject does not
work well in higher dimensions. So in any

So, to run an accept-reject sampler consider a proposal distribution q(β, σ2) = π(β)π(σ2).
That is the proposal distribution is the same as the prior distribution. Then, if MLE
exists,

π̃(β, σ2|y)

π(β)π(σ2)
=
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MLE) := M .

So an accept-reject sampler is theoretically possible to implement. However, we note
that the dimensionality of the problem will certainly impede efficiency. So that it will
be very inefficient to implement AR here and possibly close to impossible to get even
one draw from the posterior distribution in reasonable time.

1.1 Linchpin variable samplers

As we have discussed plenty of times now, it is difficult to implement AR when the
target is high-dimensional or when the upper bound is hard to get. In the first case, a
linchpin variable trick can be very useful. Suppose the target density is

π(x, y) .

Then, we can split the joint distribution as the product of conditional times marginal.
That is

π(x, y) = π(x|y) π(y) .

If X|Y is known in closed-form and we can sample from it, then we may try and get
samples from the marginal distribution of y. This is beneficial since the dimension of
y is smaller than (x, y), and implementing AR on a smaller dimensional problem will
be much easier. So the algorithm would be

• Generate Y ∼ π(y)

• Generate X ∼ X|Y

• Output (X, Y ).
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The variable Y is called the linchpin variable with target density π(y). We can use
this quite easily in Bayesian linear regression.

Example 1 (Bayesian linear regression). Recall the posterior distribution in Bayesian
linear regression as:

π(β, σ2|y) =
(
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First, note that we prefer σ2 to be the linchpin variable since it is univariate, and β
is p-variate. So we need to find the distribution β|σ2 and the marginal distribution of
σ2. Let A = (XTX + I).
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So β|σ2 is a multivariate normal distribution

β|σ2, y ∼ Np

(
A−1XTy, σ2A−1

)
,

and the integral integrates to a known constant.
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So the marginal posterior distribution for σ2|y is

σ2|y ∼ Inverse Gamma

(
n

2
+ a,

yT (I −XA−1XT )y

2
+ b

)
.

We have just done the following decomposition

π(β, σ2|y) = π(β|σ2, y)π(σ2|y) ,

where both those densities are available in closed-form and samples can be generated
easily from them in the following way:

1. Generate σ2 ∼ Inverse Gamma as indicated above

2. Generate β|σ2 ∼ Normal distribution as indicated above.

3. (β, σ2) is one draw from the posterior. Repeat for many draws, and estimate
posterior mean and quantiles.

We now implement Bayesian linear regression for the cars dataset

###########################################

## Linchpin variable sampler

## for Bayesian linear regression for cars

###########################################

set.seed(1)

# loading the dataset

data(cars)

n <- dim(cars)[1]

X <- cbind(1, cars$speed)

y <- cars$dist

p <- dim(X)[2]

a <- 1 # prior parameters

b <- 1 # prior parameters

Drawing the samples is easy, since no AR step is required

# We implement Monte Carlo sampling using linchping

N <- 1e4

A <- t(X)%*%X + diag(p)

A.inv <- solve(A)

sig2 <- numeric(length = N)

beta <- matrix(0, nrow = N, ncol = p)
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rate.sig <- ( t(y) %*% (diag(1,n) - X %*% A.inv %*% t(X)) %*% y )/2 + b

# sampling Inverge Gamma for sigma2

sig2 <- 1 / rgamma(N, shape = n/2 + a, rate = rate.sig)

# Sampling beta from multivariate normal

# mean + sqrt(covariance) %*% rnorm

foo <- svd(A.inv) #Singular values decomposition of A^{-1}

Ainv.sqrt <- foo$u %*% diag(foo$d^(1/2)) %*% t(foo$v)

for(i in 1:N)

{

beta[i,] <- A.inv %*% t(X) %*%y + Ainv.sqrt %*% rnorm(p, sd =

sqrt(sig2[i])) # Getting beta estimates

}

We can view the posterior marginal density plots of the samples

par(mfrow = c(1,3))

plot(density(sig2), main = expression(sigma^2))

plot(density(beta[,1] ), main = expression(beta[1]))

plot(density(beta[,2] ), main = expression(beta[2]))
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We can also find the posterior means and quantiles:

poster <- cbind(sig2, beta)

colMeans(poster)

# sig2

#232.404843 -14.713624 3.766138

apply(poster, 2, quantile, c(.025, .975))
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# sig2

#2.5% 157.9957 -27.370729 2.993072

#97.5% 342.2522 -1.772828 4.539354

Note that the posterior credible interval for both β1 and β2 do not have 0 in the interval,
implying both regression coefficients are important and should be treated as non-zero.

2 Questions to think about

• Implement accept-reject for the cars dataset and see for yourself how well the
algorithm works here.

• Suppose the marginal posterior distribution for σ2|y was not from a nice known
family. What could we have done then?

• What is a MAP estimator of β in this problem?
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