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1 Metropolis-Hastings continued

In this video, we will continue discussing the Metropolis-Hastings algorithm via a few
examples.

Example 1 (Normal distribution). Suppose our target distribution is the standard nor-
mal distribution with density

π(x) =
1√
2π
e−x

2/2 ∝ e−x
2/2 .

We do not need to know the proportionality constant, since that gets canceled out in
the MH ratio. We want to first choose a proposal distribution.

Let’s choose proposal distribution be a a Unif[x−h, x+h] for some window h. So that

q(y|x) =
1

2h
I(x− h < y < x+ h).

This is a symmetric proposal since q(x|y) = q(y|x) for particular values of x and y.

Next, we need to choose a starting value: we know that the center of a normal distri-
bution is 0, so let’s start there and let’s set h = 1.

1. Set x1 = 0.

2. Draw a proposed value y∗ ∼ U [xt − 1, xt + 1].

3. Calculate

α(xt, y
∗) = min

{
1,
π(y∗)

π(xt)

}
= min

{
1, exp

{
−y

∗2

2
− x2t

2

}}
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4. Draw U ∼ U [0, 1]. If U < α(xt, y
∗). Set xt+1 = y∗.

5. Else, set xt+1 = xt.

6. Stop when t = T

Notice that we set the starting value to be 0 in the above example, since the mode/mean
of the target distribution is 0. Thus, 0 is an area of high probability and a reasonable
starting point for the Markov chain. Choosing starting values for Bayesian problems
can be tricky, but the following can be helpful:

• Start from the MLE or the method of moments estimator of the parameter.

• If you believe the prior distribution is chosen well, then you can start from the
prior distribution.

Example 2 (Continuing t Bayesian example). The resulting Bayesian posterior distri-
bution is

π(µ|y) = c e−
µ2

2

n∏
i=1

(
1 +

(yi − µ)2

ν

)− ν+1
2

,

where the c is unknown.

We will use a Normal distribution proposal, centered at the current value. So q(y|x)
will be the density of the distribution N(x, h) where h is similar to stepsize. Note that
this is also a symmetric density.

We can choose a starting value for µ. µ is the mean of the t likelihood. So a good

x1 = n−1
∑

yi. We set h = 2 for now.

1. Set x1 = n−1
∑

yi.

2. Draw a proposed value y∗ ∼ N(xt, 2).

3. Calculate

α(xt, y
∗) = min

{
1,
π(y∗)

π(xt)

}
= min

1,

e−
y∗2
2

∏n
i=1

(
1 +

(yi − y∗)2

ν

)− ν+1
2

e−
x2t
2

∏n
i=1

(
1 +

(yi − xt)2

ν

)− ν+1
2


4. Draw U ∼ U [0, 1]. If U < α(xt, y

∗). Set xt+1 = y∗.

5. Else, set xt+1 = xt.

6. Stop when t = T
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###########################################

## MH samples from posterior distrbituon

# from t likelihood and normal prior

###########################################

set.seed(10)

log.post <- function(y, mu, nu)

{

-mu^2/2 - (nu + 1)/2 *sum( log( 1 + (y-mu)^2/nu ) )

}

# Generate the data set.

# No need for small n and mu close to zero (the prior)

nu <- 3

n <- 50

mu <- 4

y <- mu + rt(n, df = nu) # Generate the data

Unlike accept-reject, the MCMC algorithm will not be limited by the size of the data.
Thus, we can generate more data. Now we implement the Metropolis-Hastings algo-
rithm above.

# Now compare to MCMC for the same target distribution

T <- 1e5

mc.samp <- numeric(length = T)

mc.samp[1] <- mean(y)

acc <- 0

foo <- proc.time()

for(t in 2:T)

{

prop <- rnorm(1, mean = mc.samp[t-1], sd = .5)

ratio <- log.post(y = y, mu = prop, nu = nu) - log.post(y = y, mu =

mc.samp[t-1], nu = nu)

if(runif(1) < exp(ratio))

{

mc.samp[t] <- prop

acc <- acc + 1

}else{

mc.samp[t] <- mc.samp[t-1]

}

}

proc.time() - foo

# user system elapsed

# 0.786 0.018 0.805
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# Acceptance probability

# One dimensional problem, so the acceptance is good.

print(acc/T)

#[1] 0.4453

It is always a good idea to first look at some diagnostic plots, like the density plot, the
acf plot, and the trace plot.

par(mfrow = c(1,3))

plot(density(mc.samp), col = "blue", xlim = c(-3,5), main = "Density plot")

lines(density(rnorm(1e5)), col = "red")

legend("topleft", col = c("red", "blue"), legend = c("Prior", "Posterior"),

lty = 1)

acf(mc.samp, main = "ACF Plot")

plot.ts(mc.samp, main = "Trace plot")
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From the plots above, we learn the following:

• The estimated posterior density plot is fairly smooth, indicating a reasonable
quality of sampling. This makes sense since we generated T = 105 samples,
which is a large number of samples for this problem.

• Our acceptance probability was 44% which was well-chosen and the ACF plots
indicate reasonably low autocorrelation. Thus our samples are of a reasonable
quality.

• The trace plot looks like white noise with no discernible patterns. This is what
we are looking for.

We conclude that the sampler performs reasonably well and note that it is fast as well.

# Since the sampler looks good, we can now

# estimate the posterior mean and quantiles

mean(mc.samp)
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# [1] 3.568152

quantile(mc.samp, c(.025, .975))

# 2.5% 97.5%

#3.235619 3.902179

For the same problem, if we start from a bad starting value, the Markov chain will
look first tend towards an area of high probability.

# a short run again to indicate what happens

# with a bad starting value

# But choose a BAD starting values

T <- 1e3

mc.samp <- numeric(length = T)

mc.samp[1] <- 50 ## bad starting value

acc <- 0

foo <- proc.time()

for(t in 2:T)

{

prop <- rnorm(1, mean = mc.samp[t-1], sd = .5)

ratio <- log.post(y = y, mu = prop, nu = nu) - log.post(y = y, mu =

mc.samp[t-1], nu = nu)

if(runif(1) < exp(ratio))

{

mc.samp[t] <- prop

acc <- acc + 1

}else{

mc.samp[t] <- mc.samp[t-1]

}

}

par(mfrow = c(1,1))

plot.ts(mc.samp, main = "Trace plot with bad starting value")
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Trace plot with bad starting value
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There are multiple questions to still answer in MCMC that we will not be able to get
to here. For example:

• Even though, we have non-iid samples, how do we still have a law of large num-
bers:

1

T

T∑
t=1

Xt
a.s.→ Eπ[X] .

• Does a Markov chain version of a central limit theorem hold? If yes, what is the
variance in this CLT?

• Note that other posterior quantities pertaining to the target distribution can be
found. For example, the variance of the target distribution can be estimated by

1

T − 1

T∑
t=1

(Xt − X̄)2
a.s.→ Varπ(X) .

Similarly target quantiles can be computed by sample quantiles.

• How many samples are needed in MCMC. That is, what is T? For now, you
should obtain enough samples so that the marginal density plots are relatively
smooth.

• Tuning the MCMC sampler can take a lot of work. There are some other rules,
guidelines, that are outside the scope of the course.

• Aside from Metropolis-Hastings algorithm, there are multiple other MCMC al-
gorithms that we will not get to discuss here.
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2 Questions to think about

• Implement the MCMC sampler for the normal target distribution example. Change
proposal variance h to see how the sampler changes.

• How would you choose the proposal distribution when the target is higher-
dimensional?

• When starting from bad starting values, like the in the plot above, what do you
think we should do having observed that trace plot?

7


