
MTH511a - 2020: Lecture 2

Instructor: Dootika Vats

The instructor of this course owns the copyright of all the course materials. This lecture material was
distributed only to the students attending the course MTH511a: “Statistical Simulation and Data Analysis”
of IIT Kanpur, and should not be distributed in print or through electronic media without the consent of the
instructor. Students can make their own copies of the course materials for their use.

1 Pseudorandom Number Generation

The building block of computational simulation is the generation of uniform random numbers. If we
can draw from U(0, 1), then we can draw from most other distributions. Thus the construction of
sampling from U(0, 1) requires special attention.

Computers can generate numbers between (0, 1), which although are not exactly random (and in
fact deterministic), but have the appearance of being U(0, 1) random variables. These draws from
U(0, 1) are pseudorandom draws.

The goal in pseudorandom generation is to draw

x1, . . . , xn
approx∼ U(0, 1) .

so that they are as uniformly distributed as possible.

1.1 Multiplicative congruential method

A common algorithm to generate a sequence {xn} is the multiplicative congruential method:

1. Set seed x0, and positive integers a,m.

2. xn = a xn−1 mod m

3. Return sequence xn/m.

xn is one of 0, 1, . . .m− 1, and so xn/m is between (0, 1).

Also note that after some finite number of steps < m, the algorithm will repeat itself, since when a
seed x0 is set, a deterministic sequence of numbers follows.

Example 1 Set a = 123 and m = 10, and let x0 = 7. Then
x1 = 123 ∗ 7 mod 10 = 1
x2 = 123 ∗ 1 mod 10 = 3
x3 = 123 ∗ 3 mod 10 = 9
x4 = 123 ∗ 9 mod 10 = 7

1

x5 = 123 ∗ 7 mod 10 = 1
...

Thus, we see that the above choices of a,m, x0 repeats itself. Naturally, both a and m should be
chosen to be large so as to avoid repetition.

It is recommended to set m = 231 − 1 and a = 75. Notice that both are large.
m <- 2^(31) - 1
a <- 7^5
x <- numeric(length = 1e3)
x[1] <- 7

for(i in 2:1e3)
{

x[i] <- (a * x[i-1]) %% m
}
par(mfrow = c(1,2))
hist(x/m) # looks close to uniformly distributed
plot.ts(x/m) # look like it's jumping around too

Histogram of x/m

x/m

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

80
12

0

Time

x/
m

0 200 400 600 800

0.
0

0.
4

0.
8

Any pseudorandom generation method should satisfy:

1. for any initial seed, the resultant sequence has the “appearance” of being IID from Uniform[0, 1].

2. for any initial seed, the number of values generated before repetition begins is large

3. the values can be computed efficiently.

Typically m should be a large prime number

1.2 Mixed Congruential Generator

Another method is the mixed congruential generator :

2

1. Set seed x0, and positive integers a, c,m.

2. xn = (a xn−1 + c) mod m

3. Return sequence xn/m.
m <- 2^(31) - 1
a <- 7^5
c <- 2^(10) - 1
x <- numeric(length = 1e3)
x[1] <- 7

for(i in 2:1e3)
{

x[i] <- (c + a * x[i-1]) %% m
}
par(mfrow = c(1,2))
hist(x/m) # looks close to uniformly distributed
plot.ts(x/m) # look like it's jumping around too

Histogram of x/m

x/m

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

80
12

0

Time

x/
m

0 200 400 600 800

0.
0

0.
4

0.
8

We must be cautious not to be happy with a just a histogram. A histogram shows that the empirical
distribution of all samples is uniformly distributed. But we can still get a uniform looking histogram
if we set a = 1, m = 1e3 and c = 1
m <- 1e3
a <- 1
c <- 1
x <- numeric(length = 1e3)
x[1] <- 7

for(i in 2:1e3)
{

x[i] <- (c + a * x[i-1]) %% m
}
par(mfrow = c(1,2))

3

hist(x/m) # looks uniformly distributed
plot.ts(x/m) # look like it's jumping around too

Histogram of x/m

x/m

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

60
10

0

Time
x/

m

0 200 400 600 800

0.
0

0.
4

0.
8

Although a histogram shows an almost perfect uniform distribution, the trace plot shows that the
draws don’t behave like they are independent.

We could also use
xn = (a1xn−1 + a2xn−2 + · · ·+ akxn−k + c) mod m,

but this requires more flops from the computer, and so is not as computationally viable.

We claim that these methods return “good” pseudosamples, in the sense of the three points. There
are statistical hypothesis tests, like the Kolmogorov-Smirnov test, one can do to test whether a
sample is truly random: independent and identically distributed.

2 Integrals continued

Now that we know how to generate (pseudo) random numbers from Uniform[0, 1], we are equipped
to estimate integrals. Recall our simple problem

θ =
∫ 1

0
(3x2 + 5x) dx .

We can now carry on a simple Monte Carlo procedure to estimate θ. What if for arbitrary a and b,
interest is in ∫ 10

5
(3x2 + 5x) dx ?

If we can draw from U(5, 10), then we estimate the integral. But we only know how to draw from
U(0, 1). Note that if U ∼ U(0, 1), then for any a, b,

(b− a) ∗ U + a ∼ U(a, b) .

4

That means, we can draw U ∼ U(0, 1) and set X = (b− a) ∗ U + a. Then X ∼ U(a, b).

θ =
∫ 10

5
(3x2 + 5x) dx = 5

∫ 10

5
(3x2 + 5x)1

5 = EX∼U(10,5)(3X2 + 5X)

set.seed(1)
repeats <- 1e4
b <- 10
a <- 5
U <- runif(repeats, min = 0, max = 1)
X <- (b - a) * U + a #R is vectorized

5* mean(3*X^2 + 5*X)

[1] 1063.222

2.1 Higher dimensional integrals

Consider estimating the integral

θ =
∫ bk

ak

. . .

∫ b1

a1
g(x1, x2, . . . , xk) dx1, dx2, . . . , dxk

The same rules apply; We want to find a distribution that is defined on the space (a1, b1)×· · ·×(ak, bk).
Independent uniforms would do the trick!

Consider estimating
θ =

∫ 3

2

∫ 6

5
3x2y dxdy = E

[
3x2y

]
where that expectation is with respect to U(5, 6)× U(2, 3).
set.seed(1)
repeats <- 1e4
U1 <- runif(repeats, min = 0, max = 1)
X <- (6 - 5) * U + 5

U2 <- runif(repeats, min = 0, max = 1) # have to generate different U2
Y <- (3 - 2) * U + 2

mean(3*X^2 * Y)

[1] 230.3351

Recall: There are two main theoretical results that are essential in justifying the use of Monte Carlo
methods:

1. Weak/Strong law of large numbers: Let X1, X2, . . . be a sequence of iid random variables
having mean µ <∞. Then for any ε > 0,

Pr
{∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ > ε

}
→ 0 as n→∞ .

5

2. Central limit theorem: Let X1, X2, . . . , Xn
iid∼ F (x) with E(X1) = µ and Var(X1) = σ2 <∞,

then √
n(X̄n − µ) d→ N(0, σ2) .

The first tells us we will get increasingly close to the truth, and the second gives us a way to measure
the variability in the estimator.

2.2 Questions to think about

• Given a sample of pseudorandom draws from U(0, 1) and perfectly IID draws from U(0, 1),
would you be able to tell the difference?

• What would happen in the last example if ‘U1‘ was used to generate Y as well, instead of
using a separate U2?

6

	Pseudorandom Number Generation
	Multiplicative congruential method
	Mixed Congruential Generator

	Integrals continued
	Higher dimensional integrals
	Questions to think about

