
MTH 511a - 2020: Lecture 4

Instructor: Dootika Vats

The instructor of this course owns the copyright of all the course materials. This lecture

material was distributed only to the students attending the course MTH511a: “Statistical

Simulation and Data Analysis” of IIT Kanpur, and should not be distributed in print or

through electronic media without the consent of the instructor. Students can make their own

copies of the course materials for their use.

1 The Acceptance-Rejection Technique

Although we can draw from any discrete distribution using the inverse transform
method, you can imagine that for distributions on countably infinite spaces (like the
Poisson distribution), the inverse transform method may be very expensive. In such
situations, acceptance-rejection sampling may be more reliable.

Let {pj} denote the pmf of the target distribution with Pr(X = aj) = pj and let
{qj} denote the pmf of another distribution with Pr(Y = aj) = qj. Suppose you can
efficiently draw from {qj} and you want draw from {pj}. Let c be a constant such that

pj
qj
≤ c for all j such that pj > 0 .

If we can find such a {qj} and c, then we can implement an Acceptance-Rejection or
Accept-Reject sampler. The idea is to draw samples from {qj} and accept these samples
if they seem likely to be from {pj}.

Algorithm 1 Acceptance-Rejection sampler to draw 1 sample from {pj}
1: Draw U ∼ U [0, 1]

2: Simulate Y = y with probability mass function qj

3: if U <
py
cqy

then

4: Return X = y and stop

5: else

6: Goto step 1

1

Theorem 1. The Accept-Reject method generates a random variable with probability

Pr(X = aj) = pj .

Further, the number of iterations needed to generate an acceptance is distributed as
Geometric(1/c).

Proof. First, we look at the second statement. We note that the number of iterations
required to stop the algorithm is clearly geometrically distributed by the definition of
the geometric distribution.

We will show that the probability of success is 1/c. “Success” here is an acceptance.
First, consider

Pr(Y = aj, accepted) = Pr(Y = aj) Pr(Accept | Y = aj)

= qj Pr

(
U <

pj
cqj

)
= qj

pj
cqj

=
pj
c
.

Using this we can calculate the marginal distribution of accepting is

Pr(accept) =
∑
j

Pr(Y = aj, accept) =
∑
j

pj
c

=
1

c
.

Thus, the second statement is proved. We will now use this to show that the

We move on to the first statement. Note that

Pr(X = aj) =
∞∑
n=1

Pr(aj accepted on iteration n)

=
∞∑
n=1

Pr(No acceptance until iteration n− 1) Pr (Y = aj, accept)

=
∞∑
n=1

(
1− 1

c

)n−1
pj
c

= pj .

One important thing to note is that within the support {aj} of {pj}, the proposal
distribution must always be positive. That is, for all aj, Pr(Y = aj) = qj > 0. In other
words, a proposal distribution must have support larger than the target distribution.

Example 1 (Sampling from Binomial using AR). The binomial distribution has pmf

Pr(X = x) =

(
n

x

)
(1− p)n−xpx for x = 0, 1, . . . , n .

2

We will use AR to simulate draws from Binomial(n, p).

We could use any of Poisson, negative-binomial, or geometric distributions. We choose
to use the geometric distribution, but we must be a little careful.

We use the version of geometric distribution that is defined at the number of failures
before the first success, so that the support of the geometric distribution has 0 in it.
The pmf of the geometric distribution is

Pr(X = x) = (1− p)xp x = 0, 1,

We will first find c. Note that

p(x)

q(x)
=

(
n
x

)
(1− p)n−xpx

(1− p)xp

=

(
n

x

)
(1− p)n−2xpx−1 .

Set

c = max
x=0,1,...,n

(
n

x

)
(1− p)n−2xpx−1 .

For n = 10, p = 0.25, we yield c = 2.373

To be safe (since I don’t know all the decimal points), we can set c = 2.5. Now the AR
algorithm can be implemented simply. Below is code for the Accept-Reject sampler.

###

Accept Reject algorithm to draw from

Binomial(n,p)

###

set.seed(1)

Function draws one value from Binom(n,p)

n = number of trials

p = probability of success

draw_binom <- function(n, p)

{

accept <- 0

upper bound calculated in the notes

x <- 0:n

all_c <- choose(n,x) * (1-p)^(n - 2*x) * p^(x-1)

c <- max(all_c) + .001 # final c with slight increase for numerical

stability.

while(accept == 0)

{

U <- runif(1)

3

prop <- rgeom(1, prob = p) #draw proposal

ratio <- dbinom(x = prop, size = n, prob = p)/

(c* dgeom(x = prop, prob = p))

if(U < ratio)

{

accept <- 1

rtn <- prop

}

}

return(rtn)

}

draw_binom(n = 10, p = .25)

[1] 4

###

If we want X1, ..., Xn ~ Binom(n.p)

we need to call the function multiple times

N <- 1e3 # sample size

samp <- numeric(N)

for(t in 1:N)

{

samp[t] <- draw_binom(n = 10, p = .25)

}

mean(samp) #should be n*p = 2.5

[1] 2.51

1.0.1 Question to think about

• Why is c always greater than 1?

• Can we always find such a c?

• What happens when c is large or small?

4

