
MTH 511a - 2020: Lecture 5

Instructor: Dootika Vats

The instructor of this course owns the copyright of all the course materials. This lecture

material was distributed only to the students attending the course MTH511a: “Statistical

Simulation and Data Analysis” of IIT Kanpur, and should not be distributed in print or

through electronic media without the consent of the instructor. Students can make their own

copies of the course materials for their use.

1 The Composition method

We have now learned two algorithms for sampling from a discrete distribution: the in-
verse transform method and the accept-reject algorithm. The inverse transform method
can be used for any distribution and the accept-reject can be efficient if used properly.

For certain special distributions, it is easier to use a composition method for sampling.

Suppose we have an efficient way of simulating random variables from two pmfs {p(1)j }
and {p(2)j }, and we want to simulate from

Pr(X = j) = αp
(1)
j + (1− α)p

(2)
j j ≥ 0 where 0 < α < 1 .

First you should note that the above composition pmf is a valid pmf since
∑

j Pr(X =
j) = 1. How would we sample in such a situation?

Let X1 ∼ P (1) and X2 ∼ P (2). Set

X =

{
X1 with probability α

X2 with probability 1− α
.

Algorithm 1 Composition method

1: Draw U ∼ U [0, 1]

2: if U < α then simulate X1 ∼ P (1) else simulate X2 and stop
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Proof. We will show that Pr(X = j) is what is desired. Consider

Pr(X = j)

= Pr(X = j, U < α) + Pr(X = j, α ≤ U < 1)

= Pr(X1 = j, U < α) + Pr(X2 = j, α ≤ U < 1) (by law of total probability)

= Pr(X1 = j) Pr(U < α) + Pr(X2 = j) Pr(α ≤ U < 1) (by independence of U and X1, X2)

= αp
(1)
j + (1− α)p

(2)
j .

We can set this up more generally for n different distributions. In general, Fi, i =
1, . . . , n are distribution functions, and αi are such that 0 < αi < 1 for all i and∑

i αi = 1. The composition (or mixture) distribution is

F (x) =
n∑
i=1

αiFi(x) .

Let Xi ∼ Fi. To simulate from the composition F , set

X =


X1 with probability α1

X2 with probability α2

...

Xn with probability αn

.

Example 1 (Zero inflated Poisson distribution). A Poisson(λ) distribution usually has
a small mass at 0. But sometimes, we need a counting distribution with large mass
at 0. For example, consider the random variable X being the number of COVID-19
patients tested positive every hour. Many hours of the day this number may be 0, and
then this number can be quite high for some hours.

In such a case, we may use the zero inflated Poisson distribution (ZIP). Recall that if
X ∼ Poisson(λ)

Pr(X = k) = e−λ
λk

k!
k = 0, 1, . . . .

If X ∼ ZIP(π, λ)

Pr(X = k) =

π + (1− π)e−λ if k = 0

(1− π)e−λ
λk

k!
if k = {1, 2, . . . }

.

Note that the mean of a ZIP is (1− π)λ < λ since more mass is given at 0.
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We will use the composition method to sample from the ZIP distribution. To sample
from a ZIP, first p

(1)
j be defined as

Pr(X1 = 0) = 1 and Pr(X1 6= 0) = 0 ,

and let X2 ∼ Poisson(λ). Define the pmf:

Pr(X = k) = πp
(1)
k + (1− π)p

(2)
k .

Then X ∼ ZIP(π, λ). To see this, plug in k = 0 and k = 1, 2, . . . above:

Algorithm 2 Zero inflated Poisson distribution

1: Draw U ∼ U [0, 1]

2: if U < π then X = 0 else simulate X ∼ Poisson(λ)

2 Bernoulli factories

We have learned how to sample from a Bernoulli distribution. In this section, we
learn some tools to draw from a Bernoulli(f(p)) for some specific function f using only
Bernoulli(p) draws.

Suppose you have X1, X2, . . .
iid∼ Bern(p). Now suppose we wish to construct a Bernoulli

random variable with a parameter that is a function of p, f(p). That is, we want to
simulate Y ∼ Bern(f(p)). This process is called a Bernoulli factory.

There is no universal algorithm for all f(p), but we can construct one on a case by case
basis.

Example 2. Suppose we can simulate X ∼ Bern(p). Can we simulate a Bernoulli
random variable with success probability

f(p) = p2(1− p) ?

We are free to draw as many samples as we want from Bern(p).

So if we draw three indepenent samples from Bern(p) and look at the event: {X1 =
1, X2 = 1, X3 = 0}. Then

Pr (X1 = 1, X2 = 1, X3 = 0) = Pr(X1 = 1) Pr(X2 = 1) Pr(X1 = 0) = p2(1− p) .

Thus, the following algorithm returns 1 with probability f(p) = p2(1− p).
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Algorithm 3 Bernoulli factory for f(p) = p2(1− p)
1: Draw X1 ∼ Bern(p)

2: if X1 = 0 then

3: set X = 0, stop

4: Simulate X2 ∼ Bern(p).

5: if X2 = 0 then

6: set X = 0, stop

7: Simulate X3 ∼ Bern(p).

8: if X3 = 1 then

9: X = 0, stop

10: Set X = 1.

The above returns X = 1 with probability p2(1 − p). There is another even simpler
method.

Note that for X1, X2, X3
iid∼ Bern(p). Consider X = X1X2(1−X3), then

Pr[X1X2(1−X3) = 1] = Pr[X1 = 1] Pr[X2 = 1] Pr[1−X3 = 1] = p2(1− p) ,

where the decomposition is because the only way X1X2(1−X3) = 1 is if all three terms
are equal to 1.

Algorithm 4 Another Bernoulli factory for f(p) = p2(1− p)

1: Draw X1, X2, X3
iid∼ Bern(p)

2: Return X = X1X2(1−X3)

Similarly other polynomials of p can be considered.

3 Questions to think about

1. Can you construct a similar zero inflated Binomial distribution? How would you
sample from it?

2. Try setting up a Bernoulli factory for p5(1− p)2.

3. I claim Algorithm 3 is better than Algorithm 4. Why?
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