
MTH 511a - 2020: Lecture 6

Instructor: Dootika Vats

The instructor of this course owns the copyright of all the course materials. This lecture

material was distributed only to the students attending the course MTH511a: “Statistical
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through electronic media without the consent of the instructor. Students can make their own

copies of the course materials for their use.

1 Generating continuous random variables

We will discuss three methods for generating continuous random variables:

1. Inverse transform

2. The accept-reject method

3. Ratio of uniforms

1.1 Inverse transform

The principles of the inverse transform method for discrete distributions, apply simi-
larly to continuous random variables.

Consider a random variable X with probability density function f(x) so that f(x) ≥ 0,∫∞
−∞ f(x) = 1 and distribution function is

F (x) =

∫ x

−∞
f(x) dx .

The following theorem will be the foundation for the inverse transform method.

Theorem 1. Let U ∼ U [0, 1]. For any continuous distribution F , a random variable
X = F−1(U) has distribution F .
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Proof. Let FX be the distribution function of X = F−1(U). Then,

FX(x) = Pr(X ≤ x)

= Pr(F−1(U) ≤ x)

= Pr(F (F−1(U)) ≤ F (x))

= Pr(U ≤ F (x))

= F (x) .

Example 1. Exponential(1): For the Exponential(1) distribution, the cdf isF (x) =
1− e−x. Thus,

F−1(u) = − log(1− u) .

To generate X ∼ Exp(1) we can thus use the following algorithm:

Algorithm 1 Exponential(1) Inverse transform

1: Generate U ∼ U [0, 1]

2: Set X = − log(1− U) ∼ Exp(1)

Example 2. Cauchy distribution: Cauchy distribution has pdf

f(x) =
1

π

1

(1 + x2)
,

and

u = F (x) =

∫ x

∞
f(y)dy =

1

π
arctan(x) +

1

2
.

So, F−1(u) = tan(π(u− .5).

Algorithm 2 Cauchy distribution

1: Generate U ∼ U [0, 1]

2: Set X = tan(π(U − .5) ∼ Cauchy

Example 3. Gamma distribution: The CDF of a Gamma(n, λ) distribution is

F (x) =

∫ x

0

λe−λy(λy)n−1

Γ(n)
.

Thus, we don’t know the CDF in closed form and cannot find the inverse. This is an
example where the inverse transform method cannot work.
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1.2 Accept-reject method

Suppose we cannot generate from distribution function F (x) with pdf f(x), like the
Gamma distribution example. We can use accept-reject in a similar way as the discrete
case.

Draw samples from a distribution with density g(x), and accept or reject it based on
certain probabilities.

Let the support of F be X and choose a proposal distribution G with density g(x)
whose support is larger or the same as the support of F . That is, if Y is the support
of G then, X ⊆ Y . If we can fine c such that

sup
x∈X

f(x)

g(x)
≤ c ,

then an accept-reject sampler can be implemented.

Algorithm 3 Accept-reject for continuous random variables

1: Draw U ∼ U [0, 1]

2: Draw proposal Y ∼ G

3: if U ≤ f(Y )

c g(Y )
then

4: Return X = Y

5: else

6: Go to Step 1.

Theorem 2. Algorithm 3 returns X ∼ F .

Proof. Consider any set B in X. We will show that

Pr(X ∈ B) = F (B) .

First, we consider the probability of acceptance:

Pr(accept) = Pr

(
U ≤ f(Y )

cg(Y )

)
= E

[
I

(
U ≤ f(Y )

cg(Y )

)]

= E

[
E

[
I

(
U ≤ f(Y )

cg(Y )

)
| Y
]]

= E

[
Pr

(
U ≤ f(Y )

cg(Y )
| Y
)]
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= E

[
f(Y )

cg(Y )

]
=

∫
Y

f(y)

cg(y)
g(y)dy

=
1

c

∫
Y
f(y)dy

=
1

c

∫
X
f(y)dy +

1

c

∫
Y/X

f(y)dy

=
1

c
.

Now that we have this established, consider

Pr(X ∈ B) = Pr(Y ∈ B | accept)

=

Pr

(
Y ∈ B,U <

f(Y )

cg(Y )

)
Pr(accept)

= c · E
[
E

[
I

(
Y ∈ B,U <

f(Y )

cg(Y )

)
| Y
]]

= c · E
[
I (Y ∈ B) E

[
I

(
U <

f(Y )

cg(Y )

)
| Y
]]

= c · E
[
I (Y ∈ B)

f(Y )

cg(Y )

]
= c ·

∫
B

f(y)

cg(y)
g(y)dy

=

∫
B

f(y)

= F (B) .

From the proof, we know that Pr(accept) = 1/c, and just like the discrete example, the
number of attempts it takes to generate an acceptance is distributed Geometric(1/c).
Thus

Mean number of loops for an acceptance is = c .

1.3 Questions to think about

• Can we use the inverse transform method to generate sample from a normal
distribution?

• In A-R, do we want c to be large or small?

• Can we always find such a c?
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