
MTH 511a - 2020: Lecture 8

Instructor: Dootika Vats

The instructor of this course owns the copyright of all the course materials. This lecture

material was distributed only to the students attending the course MTH511a: “Statistical

Simulation and Data Analysis” of IIT Kanpur, and should not be distributed in print or

through electronic media without the consent of the instructor. Students can make their own

copies of the course materials for their use.

1 Generating continuous random variables

1.1 The Box-Mueller transformation: for N(0, 1).

A classical method to generate samples from N(0, 1) is the Box-Mueller transformation
method. Here, we will draw random variables (R2,Θ) from a certain distribution and
then use a transformation so that h(R2,Θ) ∼ N(0, 1). First, we will need some theory
for this.

Let X and Y be independent and identically distributed N(0, 1). The joint density of
(X, Y) is

f(x, y) =
1

2π
e−x

2/2e−y
2/2 .

Let (R2,Θ) denote the polar coordinates of (X, Y) so that X = R cos Θ and Y =
R sin Θ. Then,

R2 = X2 + Y 2 tan Θ =
Y

X
.

For the transformation, let d = x2 + y2 and θ = tan−1(y/x). We know that the density
for (d, θ) can be found by

f(d, θ) = |J |f(x, y) where J =

∣∣∣∣∣∣
∂x
∂d

∂y
∂d

∂x
∂θ

∂y
∂θ

∣∣∣∣∣∣
Solving for J ,

J =

∣∣∣∣∣∣
∂
√
d cos θ
∂d

∂
√
d sin θ
∂d

∂
√
d cos θ
∂θ

∂
√
d sin θ
∂θ

∣∣∣∣∣∣ =
1

2
.

1

Since d = x2 + y2, the joint density of (R2,Θ) is f(d, θ) with

f(d, θ) =
1

2

1

2π
e−d/2 0 < d <∞, 0 < θ < 2π

=
1

2π︸︷︷︸
U(0,2π)

I(0 < θ < 2π)
1

2
e−d/2︸ ︷︷ ︸

Exp(2)

I(0 < d <∞)

This is a separable density, so R2 and Θ are independent, and Θ ∼ U [0, 2π] and
R2 ∼ Exp(2).

To generate from Exp(2), we can use an inverse transform method. If U ∼ U(0, 1),
then by the inverse transform method, −2 logU ∼ Exp(2) (verify for yourself). To
generate from U(0, 2π), we know if U ∼ U(0, 1), then 2πU ∼ U(0, 2π). The Box-
Mueller algorithm then is given in Algorithm 1 which produces X and Y from N(0, 1)
indendently.

Algorithm 1 Box-Mueller algorithm for N(0, 1)

1: Generate U1 and U2 from U [0, 1] independently

2: Set R2 = −2 logU1 and Θ = 2πU2

3: Set X = R cos(Θ) =
√
−2 logU1 cos(2πU2)

4: and Y = R sin(Θ) =
√
−2 logU1 sin(2πU2) .

1.2 Ratio-of-Uniforms

Ratio-of-uniforms is a powerful, however not so popular method to generate samples
for a continuous random variables.

Theorem 1. Let f(x) be a target density with distribution function F . Define set

C =

{
(u, v) : 0 ≤ u ≤

√
f
(v
u

)}
.

Let (U, V) be uniformly distributed over the set C, then V/U ∼ F .

Proof. We will show that the density of Z = V/U is f(z). Note that by definition,,
the joint density of (U, V) is

f(U,V)(u, v) =
1∫ ∫

C
du dv

I((u, v) ∈ C) .

Consider transformation (U, V) 7→ (U,Z) with Z = V/U . Then U = U and V = UZ.
The Jacobian for this transformation is U . So

f(U,Z)(u, z) =
u∫ ∫

C
du dv

I
{

0 ≤ u ≤ f 1/2(z)
}
.

2

Finding the marginal distribution of Z = V/U , we integrate out U ,

fZ(z) =

∫
u∫ ∫

C
du dv

I
{

0 ≤ u ≤ f 1/2(z)
}
du

=
1∫ ∫

C
du dv

∫ f1/2(z)

0

udu

=
f(z)

2
∫ ∫

C
du dv

.

Since fZ(z) and f(z) are both densities, this implies that

1 =

∫
fZ(z)dz =

∫
f(z)dz

2
∫ ∫

C
du dv

=
1

2
∫ ∫

C
du dv

⇒
∫ ∫

C

du dv =
1

2

This implies fZ(z) = f(z) .

Thus, V/U has the desired distribution.

So if we can draw (U, V) ∼ Unif(C), then V/U ∼ F . But C looks quite complicated,
so how do we uniformly draw from C?

Think back to the AR technique used to draw uniformly from a circle! If we enclose
C in a rectangle, we can use accept-reject! Find U [0, a]× [b, c] such that

0 ≤ u ≤ a b ≤ v ≤ c .

First, note that if supx f
1/2(x) exists, then

0 ≤ u ≤ f 1/2
(v
u

)
≤ sup

x
f 1/2(x) := a .

Note now that if x = v/u⇒ v/x = u ≤ f 1/2(x). This implies that

v

x
≤ f 1/2(x) .

For:

x ≤ 0 : v ≥ xf 1/2(x) ≥ inf
x≤0

xf 1/2(x) := b

x ≥ 0 : v ≤ xf 1/2(x) ≤ sup
x≥0

xf 1/2(x) := c .

Note that if
√
f(x) or x2f(x) are unbounded, then C is unbounded, and the method

cannot work.

3

Algorithm 2 Ratio-of-Uniforms

1: Generate (U, V) ∼ U [0, a]× U [b, c]

2: If U ≤
√
f(V/U), then set X = V/U .

3: Else go to 1.

Steps 1 and 2 in Algorithm 2 are implementing an Accept-Reject to sample uniformly
from C. To understand how effective this algorithm will be, we can calculate the
probability of acceptance for the AR. First, note that

sup
(u,v)∈C

f(u, v)

g(u, v)
= sup

(u,v)∈C

I((u,v)∈C)∫
C dudv

I((u,v)∈(0,a)×(b,c))
a∗(c−b)

= 2a(c− b)

Thus,

Pr (Accepting for AR in RoU) =
1

2a(c− b)
.

So if a is large and/or (c− b) is large, the probability is small.

Example 1 (Exponential(1)).
f(x) = e−x x ≥ 0

Here,
C = {(u, v) : 0 ≤ u ≤ e−v/2u} .

Recall that the set a = supx e
−x/2 = 1, since that is a decreasing function. Additionally,

b = inf
x≤0

xe−x/2 = 0 since suppose is x ≥ 0

and
c = sup

x≥0
xe−x/2 ⇒ c = 2e−1 show for yourself .

So we sample from U [0, 1]× [0, 2/e] and then implement accept-reject.

##

Ratio of Uniforms for Exp(1)

##

set.seed(1)

function to sample from the rectangle

drawFromRect <- function(a, b, c)

{

u <- runif(1, min = 0, max = a)

v <- runif(1, min = b, max = c)

return(c(u,v))

}

sqrt f function

4

sqrt.f <- function(x) exp(-x/2)

Starting the process for Exp(1)

a <- 1

b <- 0

c <- 2*exp(-1)

prob.of.acceptance <- 1/(2*a*(c-b)) # true prob. of acceptance for AR

N <- 1e4 # number of samples

samp <- numeric(length = N)

i <- 1

counter <- 0 # to check acceptance

while(i <= N)

{

counter <- counter + 1

prop <- drawFromRect(a = a, b = b, c = c)

vbyu <- prop[2]/prop[1]

if(prop[1] < sqrt.f(vbyu))

{

samp[i] <- vbyu

i <- i + 1

}

}

plot(density(samp), main = "Estimated density for Exp(1)")

lines(density(rexp(1e4, 1)), col = "red")

legend("topright", col = c("black", "red"), lty = 1, legend = c("RoU",

"Truth"))

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

Estimated density for Exp(1)

N = 10000 Bandwidth = 0.1196

D
en

si
ty

RoU
Truth

5

(prob.of.acceptance)

[1] 0.6795705

N/counter # very close

[1] 0.6796248

Example 2 (Normal(0,1)). The target density is:

f(x) =
1√
2π
e−x

2/2 .

The set C is

C =

{
(u, v) : 0 ≤ u ≤

(
1

2π

)1/4

e−v
2/4u2

}
To find the bounds:

a = sup
x∈R

(2π)−1/4e−x
2/4 = (2π)−1/4

b = inf
x≤0

(2π)−1/4xe−x
2/4 at x=−

√
2

= −(2π)−1/4
√

2e−
√
2
2
/4 = −(2π)−1/4

√
2e−1

c = −b

All that needs to be done now is to implement Algorithm 2 with these values of a, b, c
etc.

1.3 Questions to think about

1. Can you do a similar polar coordinate construction to sample from a Cauchy
distribution?

2. Construct a similar RoU sampler for Cauchy distribution.

3. Why does RoU fail when C is unbounded?

6

