
MTH 511a - 2020: Lecture 10

Instructor: Dootika Vats

The instructor of this course owns the copyright of all the course materials. This lecture

material was distributed only to the students attending the course MTH511a: “Statistical

Simulation and Data Analysis” of IIT Kanpur, and should not be distributed in print or

through electronic media without the consent of the instructor. Students can make their own

copies of the course materials for their use.

1 Miscellaneous methods in sampling

1.1 Known relationships

It is always useful to remember the relationships between different distributions.

1. Binomial distribution: We know that if Y1, Y2, . . . , Yn
iid∼ Bern(p), then

X = Y1 + Y2 + . . . Yn ∼ Bin(n, p) .

So, we can simulate n Bernoulli variables, add them up, and we have a realization
from a Binomial(n, p).

2. Negative binomial distribution: Number of failures until the rth success. So

possibly related to geometric! If Y1, Y2, . . . , Yr
iid∼ Geom(p) (on failures), then

X = Y1 + Y2 + · · ·+ Yr ∼ NB(r, p) .

3. Beta distribution If X ∼ Gamma(a, 1) and Y ∼ Gamma(b, 1), then

X

X + Y
∼ Beta(a, b) .
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4. Dirichlet distribution : The Dirichlet distribution is a distribution over pmf.

f(x1, x2, . . . , xk) =
Γ(α1 + · · ·+ αk)∏k

i=1 Γ(αi)

k∏
i=1

xαi−1
i 0 ≤ xi ≤ 1,

k∑
i=1

xi = 1 .

The Dirichlet distribution is a generalization of the Beta distribution. Similarly,

Y1 ∼ Gamma(α1, 1)

Y2 ∼ Gamma(α2, 1)

...

Yk ∼ Gamma(αk, 1)

Let

Xi =
Yi∑k
i=1 Yi

.

Then (X1, . . . , Xk) ∼ Dir(α1, α2, . . . , αk).

5. Chi-squared distribution: If Y1, Y2, . . . , Yk
iid∼ N(0, 1), then

X = Y 2
1 + Y 2

2 + · · ·+ Y 2
k ∼ χ2

k .

This way we can simulate χ2 distributions with integer degrees of freedom.

6. t-distribution Let Z ∼ N(0, 1) and Y ∼ χ2
k, then

X =
Z√
Y

k

∼ tk .

7. Location-scale family: If Z has CDF FZ(z) in the sense that it doesn’t have
any parameters. Then for µ ∈ R and σ > 0,

Y = µ+ σZ has CDF FX

(
z − µ
σ

)
.

If Z has pdf f(z) then Y has pdf σ−1f((z − µ)/σ).

So, if Z ∼ N(0, 1), then Y = µ+ σZ ∼ N(µ, σ2).
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1.2 Sampling from mixture distributions

Mixture distributions for continuous densities is very similar to the discrete distri-
butions. For j = 1, . . . , k, let Fj(x) be a distribution function and let fj(x) be the
corresponding density function. A mixture distribution function, F is

F (x) =
k∑
j=1

πjFj(x) where πj > 0,
∑
j

πj = 1

and the corresponding density is

f(x) =
k∑
j=1

πjfj(x) .

If we can draw from each Fj then we can draw from the mixture distribution F as well
using the same steps as in the discrete case.

Algorithm 1 Sampling from a mixture distribution

1: Generate U ∼ U [0, 1]

2: If U < π1, generate from F1

3: If U < π1 + π2, generate from F2

4: . . .

5: If U <
∑k−1

i=1 πi, generate from Fk−1

6: Else, generate from Fk .

Example 1 (Mixture of normals). Consider two normal distributions N(µ1, σ
2
1) and

N(µ1, σ
2
2). For some 0 < p < 1, the mixture density is

f(x) = pf1(x;µ1, σ
2
1) + (1− p)f2(x;µ2, σ

2
2)

= p
1√

2πσ2
1

exp

{
−1

2

(
x− µ1

σ1

)2
}

+ (1− p) 1√
2πσ2

2

exp

{
−1

2

(
x− µ2

σ2

)2
}

Mixture distributions are particularly useful for clustering problems and we will come
back to them again in the data analysis part of the course. If we want to sample from
this distribution
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Algorithm 2 Sampling from a Gaussian mixture

1: Generate U ∼ U [0, 1]

2: If U < p, generate N(µ1, σ
2
1) (using location-scale family trick)

3: Otherwise, generate N(µ2, σ
2
2).

Example 2 (Zero-inflated gamma distribution). Just like the zero-inflated Poisson dis-
tribution, there are zero-inflated normal and Gamma distributions. Let’s motivate the
zero-inflated Gamma distribution:

Suppose you are an auto-insurance company and you want to study the cost of claims
associated with each customer. That is, each customer, if they have an accident, will
come to you and claim insurance money reimbursement for the accident. So

Let X = insurance money asked for by a customer in a month.

However, most customers will not enter into any accidents, so they will claim Rs 0.
But when they do, they will claim reimbursement for some amount of money that, say,
will follow a Gamma distribution.

The density function can be defined as follows for 0 < p < 1

f(x) = pI(x = 0) + (1− p) βα

Γ(α)
xα−1e−xβ .

Algorithm 3 Sampling from a zero-inflated Gamma

1: Generate U ∼ U [0, 1]

2: If U < p, return X = 0

3: Otherwise, generate X ∼ Gamma(α, β).

1.3 Multidimensional target

We have almost entirely focused on univariate densities, but most often interest is in
multivariate/multidimensional target distribution.

• Conditional Distribution: Consider a variable X = (X1, X2, . . . , Xk), with a
joint pdf

f(x) = f(x1, x2, . . . , xk) .

We can use conditional distribution properties:

f(x) = fX1(x1)fX2|X1(x2) . . . fXk|X1,...,Xk−1
(xk) .
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Algorithm 4 Sampling X using conditional distributions

1: Generate X1 ∼ fX1(x1)

2: Generate X2 ∼ fX2|X1(x2)

3: Generate X3 ∼ fX3|X2,X1(x3)

4:
...

5: Generate Xn ∼ fXk|Xk−1,...,X1(xk)

6: Return X = (X1, . . . , Xk)

• Multivariate normal: Consider sampling from a Nk(µ,Σ) where Σ is positive
definite. Then for | · | denoting determinant,

fX(x) =

(
1

2π

)k/2
|Σ|−1/2 exp

{
−(x− µ)TΣ−1(x− µ)

2

}
,

is the density of a multivariate normal distribution with mean µ and covariance
Σ. First, note that since Σ is a positive-definite (symmetric) matrix, we can use
the spectral decomposition

Σ = QΛQ−1

where Q is the matrix of eigenvectors and Λ is a diagonal matrix of eigenvalues.
Then, we can define the square-root of Σ as

Σ1/2 = QΛ1/2Q−1 ,

so that
Σ1/2Σ1/2 = QΛ1/2Q−1QΛ1/2Q−1 = QΛQ−1 .

Similarly, the inverse square-root is

Σ−1/2 = QΛ−1/2Q−1 ,

Set Z = Σ−1/2(X− µ). Then

Z ∼ Nk(0, Ik) .

That is, Z is a k-dimensional multivariate normal distribution with an identity
covariance matrix. Which implies if Z = (Z1, . . . , Zk), then Cov(Zi, Zj) = 0 for
all i 6= j.

For the normal distribution, if the covariance is zero, then the random variables
are independent! This isn’t true in general but is true for normal random vari-
ables.
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So, to sampling from Nk(µ,Σ), we can sample Z1, Z2, . . . , Zk
iid∼ N(0, 1), and set

Z = (Z1, . . . , Zk). Then

X := µ+ Σ1/2Z ∼ Nk(µ,Σ) .

Then Z ∼ Nk(µ,Σ).

####################################################################

## Generate from multivariate normal distribution

####################################################################

set.seed(1)

par(mfrow = c(2,2))

# Function produces samples from a multivariate normal

multinorm <- function(mu, Sigma, N = 5e2)

{

# Eigenvalue (spectral) decomposition

decomp <- eigen(Sigma)

# Finding matrix square-root

Sig.sq <- decomp$vectors %*% diag(decomp$values^(1/2)) %*%

solve(decomp$vectors)

samp <- matrix(0, nrow = N, ncol = 2)

for(i in 1:N)

{

Z <- rnorm(2)

samp[i, ] <- mu + Sig.sq %*%Z

}

return(samp)

}

###

# First: Mean (-5, 10) and .5 correlation

mu <- c(-5,10)

Sigma <- matrix(c(1, .5, .5, 1), nrow = 2, ncol = 2)

samp <- multinorm(mu = mu, Sigma = Sigma)

par(mfrow = c(1,3))

plot(samp, asp = 1, main = "Correlation = .5", xlab = "x_1", ylab =

"x_2")

plot(density(samp[,1]), main = "Marginal density for X1")

plot(density(samp[,2]), main = "Marginal density for X2")

par(mfrow = c(2,2))

plot(samp, asp = 1, main = "Correlation = .5", xlab = "x_1", ylab =

"x_2")
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###

# Second: Mean (-5, 10) and .99 correlation

mu <- c(-5,10)

Sigma <- matrix(c(1, .99, .99, 1), nrow = 2, ncol = 2)

plot(samp, asp = 1, main = "Correlation = .99", xlab = "x_1", ylab =

"x_2")

###

# Third: Mean (-5, 10) and -.8 correlation

mu <- c(-5,10)

Sigma <- matrix(c(1, -.8, -.8, 1), nrow = 2, ncol = 2)

samp <- multinorm(mu = mu, Sigma = Sigma)

plot(samp, asp = 1, main = "Correlation = -.8", xlab = "x_1", ylab =

"x_2")

###

# Fourth: Mean (-5, 10) and no correlation

mu <- c(-5,10)

Sigma <- matrix(c(1, 0, 0, 1), nrow = 2, ncol = 2)

samp <- multinorm(mu = mu, Sigma = Sigma)

plot(samp, asp = 1, main = "Correlation = 0", xlab = "x_1", ylab =

"x_2")
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2 Questions to think about

• Can you construct a zero-inflated normal distribution and find a suitable appli-
cation of it?

• How can you generate samples from an F -distribution?

• Can you generate samples from a Cauchy distribution that has mean 10 (instead
of 0)?
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