
MTH 511a - 2020: Lecture 11

Instructor: Dootika Vats

The instructor of this course owns the copyright of all the course materials. This lecture

material was distributed only to the students attending the course MTH511a: “Statistical

Simulation and Data Analysis” of IIT Kanpur, and should not be distributed in print or

through electronic media without the consent of the instructor. Students can make their own

copies of the course materials for their use.

We have so far learned many (many!) ways of sampling from different distributions.
As motivated in the first week of the course, these sampling methodologies are useful
in Monte Carlo estimation problems.

Suppose π is a distribution with density π (this is an abuse of notation that is commonly
made in sampling literature). We are interested in estimating the expectation of a
function h : X → R with respect to π. That is, we want to estimate

θ := Eπ[h(X)] =

∫
X
h(x)π(x) dx ,

we assume that θ is finite.

Note: there is no data here, there is just an integral!

Note: notation Eπ[X] means the expectation is with respect to π. From now on, it is
very important to keep track of what the expectation is with respect to.

Suppose we can draw iid samples X1, . . . , XN
iid∼ π(x) (this we can do using the many

methods we have learned). Then define the estimator:

θ̂ =
1

N

N∑
t=1

h(Xt) .

By the law of large numbers we know that as N →∞

θ̂
p→ θ .

In addition, we can find the variance of the estimator:

Varπ(θ̂) = Varπ

(
1

N

N∑
t=1

h(Xt)

)
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=
1

N2

N∑
t=1

Varπ(h(Xt)) because of independence

=
Varπ(h(X1))

N
because of identical .

Naturally, a CLT holds if Varπ(h(X1)) <∞.

Q. But is there a way we can obtain a better estimator of θ?

A. Possibly by using importance sampling.

1 Importance Sampling

1.1 Basic/simple importance sampling

Let G be a distribution with density g defined on X so that,

Eπ[h(X)] =

∫
X
h(x)π(x)dx

=

∫
X

h(x)π(x)

g(x)
g(x) dx

= Eg

[
h(Z)π(Z)

g(Z)

]
, Z ∼ G

If Z1, . . . , ZN are iid samples from G, then an estimator of θ is

θ̂g =
1

N

N∑
t=1

h(Zt)π(Zt)

g(Zt)
.

The estimator θ̂g is the importance sampling estimator, the method is called importance
sampling and G is the importance distribution.

Example 1 (Moments of Gamma distribution). Suppose we want to estimate the kth
moment of a Gamma distribution.That is, let π be the density of a Gamma(α, β)
distribution. Then

θ =

∫ ∞
0

xk
βα

Γ(α)
xα−1e−βxdx .

Suppose we set G to be also an Exponential(λ) distribution. Let Z1, . . . , Zn ∼ Exp(λ)

θ̂g =
1

N

N∑
t=1

[
h(Zt)π(Zt)

g(Zt)

]
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=
1

N

N∑
t=1

[
βα

Γ(α)

Zk
t Z

α−1
t e−βZt

λe−λZt

]

In the below simulation, I set α = 2, β = 5 and set λ = 3.

set.seed(1)

alpha <- 2

beta <- 5

k <- 2 # second moment

(truth <- (alpha / beta^2) + (alpha/beta)^2) # true second moment

#[1] 0.24

lambda <- 3 #proposal

N <- 1e4

samp <- rexp(N, rate = lambda) # importance samples

func <- samp^k * dgamma(samp, shape = alpha, rate = beta) / dexp(samp, rate

= lambda)

mean(func) # truth is .24

#[1] 0.2385123

Our estimate is fairly close to the truth!

We can also visually compare the reference density π and the importance density g.
Below, I also plot the first 100 draws from G.

foo <- seq(0, 2, length = 1e3)

plot(foo, dgamma(foo, shape = alpha, rate = beta),

type = ’l’, col = "black", ylab = "density", ylim = c(0, 5))

lines(foo, dexp(foo, rate = lambda), col = "red")

points(x = samp[1:100],y = rep(0, 100), col = "blue")

legend("topright", legend = c("Gamma(2,10)", "Exp(5)"), col = c(1,2), lty =

1)
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Theorem 1 (Unbiasedness). The importance sampling estimator θ̂g is unbiased for θ.

Proof. To show an estimator is unbiased, we need to show that Eg[θ̂g] = θ. Consider

Eg

[
θ̂g

]
= Eg

[
1

N

N∑
t=1

h(Zt)π(Zt)

g(Zt)

]

=
1

N

N∑
t=1

Eg

[
h(Zt)π(Zt)

g(Zt)

]

=
1

N

N∑
t=1

Eg

[
h(Z1)π(Z1)

g(Z1)

]
=

∫
X

h(z)π(z)

g(z)
g(z) dz

=

∫
X
h(z)π(z)dz

= θ .

By the law of large numbers, as N →∞,

θ̂g
p→ E[θ̂g] = θ .

This means that as we get more and more samples from G, our estimator will get
increasingly closer to the truth.

Example 2 (Gamma continued...). We can try to “verify” convergence by checking
what happens as N →∞ in one simulation.
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## Checking convergence

N <- 1e5 # very large N

samp <- rexp(N, rate = lambda) # importance samples

func <- samp^k * dgamma(samp, shape = alpha, rate = beta) / dexp(samp, rate

= lambda)

# Plotting the running average

plot(1:N, cumsum(func)/(1:N), type = ’l’, xlab = "N", ylab = "Running

average")

abline(h = truth, col = "red")
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We will also try to “verify” via simulation that θ̂g obtained before is indeed unbiased.

By definition of unbiasedness, Eg[θ̂g − θ] = 0. Thus, to mimic this in simulation, we
will repeat the simulation multiple times (r times) so that we obtain

θ̂1g , θ̂
2
g , . . . , θ̂

r
g .

Then by definition, if r is large:

Diffr =
1

r

r∑
k=1

(θ̂kg − θ) ≈ Eg[θ̂g − θ] .

Thus, if Diffr ≈ 0, then we know that the procedure is likely unbiased.

## Checking if unbiased or not

N <- 1e4

r <- 1e3

ests <- numeric(length = r)

for(a in 1:r)

{

samp <- rexp(N, rate = lambda) # importance samples

func <- samp^k * dgamma(samp, shape = alpha, rate = beta) / dexp(samp,

rate = lambda)
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ests[a] <- mean(func)

}

mean(ests - truth) # very close to 0

[1] 2.700126e-05

However, we should never be happy with a point estimator! It is essential to quantify
the variability in our estimator θ̂g in order to ascertain how “erratic” or “stable” the

estimator. We also want to make confidence intervals around θ̂g, but does a central

limit theorem hold?. Note that, the variance of θ̂g is

Varg(θ̂g) = Varg

(
1

N

N∑
t=1

h(Zt)π(Zt)

g(Zt)

)
=

1

N
Varg

(
h(Z1)π(Z1)

g(Z1)

)
:=

σ2
g

N
.

A central limit theorem will hold if Varg

(
h(Z1)π(Z1)

g(Z1)

)
<∞.

So the question is, when is this finite? The following provides a sufficient condition.

Theorem 2. Suppose Varπ(h(X)) <∞. If g is chosen such that

sup
z∈X

π(z)

g(z)
≤M <∞

then
σ2
g <∞ .

Proof. First note that if the second moment is finite, then the variance is finite. So,
consider the second moment of h(Z)π(Z)

g(Z)
where Z ∼ g.

Eg

[(
h(Z)π(Z)

g(Z)

)2
]

=

∫
X

h(z)2π(z)2

g(z)2
g(z)dz

=

∫
X
h(z)2

π(z)

g(z)
π(z)dz

≤M

∫
X
h(z)2π(z)dz

= M Eπ(h(X)2) <∞ by assumption .

Thus, if an accept-reject on the same support is possible, the variance of the importance
sampling method estimator is finite. Now, we have a central limit theorem that can
hold. Recall

σ2
g = Varg

(
h(Z)π(Z)

g(Z)

)
. (1)
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If σ2
g <∞, then as N →∞,

√
n(θ̂g − θ)

d→ N(0, σ2
g) . (2)

Example 3 (Gamma continued). We can and “verify” again via simulation if σ2
g is finite.

Of course, we will not be able to verify this exactly, but we can guess, what’s going on.

Recall from lecture 9 that for Gamma(α, β) with α > 1 and exponential proposal for
an accept-reject sampler will work only if λ < β. We chose λ = 3 and β = 5, thus our
running example produces finite variance estimator of θ. We can “verify” by using our
replications

θ̂1g , θ̂
2
g , . . . , θ̂

r
g

and noting that the sample variance of these r estimates should be σ2
g/N . That is

1

r − 1

r∑
k=1

(θ̂kg −mean(θ̂1:rg )) ≈
σ2
g

N
.

# looking at variance

var(ests) # This is var(theta_g) = sigma^2_g/N

# [1] 1.203824e-05

N*var(ests) # pretty small

# [1] 0.1203824

Now let’s change things up, let’s see what happens when we set λ = 10! For this
setting, the accept-reject does not work, since

sup
z

π(z)

g(z)
=∞

This does not imply that σ2
g = ∞ since the above theorem only provides a

necessary condition. Nonetheless,

## When Accept-reject fails

# If lambda > beta, we know accept-reject fails, let’s see what the

variance is then

lambda <- 10

N <- 1e4

r <- 1e3

ests <- numeric(length = r)

for(a in 1:r)

{

samp <- rexp(N, rate = lambda) # importance samples

func <- samp^k * dgamma(samp, shape = alpha, rate = beta) / dexp(samp,

rate = lambda)

ests[a] <- mean(func)
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}

mean(ests - truth) # close to 0

# [1] -0.01287952

var(ests) # This is var(theta_g) = sigma^2_g/N

#[1] 0.02645068

N*var(ests) # Variance is much larger now!

# [1] 264.5068

We can see that the variance blows up! This means that our estimator cannot be
trusted from one simulation to another!

Moreover, in this example the convergence plots can be analyzed as well. Note that,
to convergence in the law of large numbers, we do not require a finite variance, so
convergence will still occur. However, the sample size required to get close will be
much large and for finite N , residual variability will remain.

## Checking convergence again

# Convergence is not affected, but it takes MUCH longer

# to get good convergence

par(mfrow = c(1,2))

N <- 1e5 # very large N

samp <- rexp(N, rate = lambda) # importance samples

func <- samp^k * dgamma(samp, shape = alpha, rate = beta) / dexp(samp, rate

= lambda)

# Plotting the running average

plot(1:N, cumsum(func)/(1:N), type = ’l’, xlab = "N", ylab = "Running

average")

abline(h = truth, col = "red")

N <- 1e6 # very large N

samp <- rexp(N, rate = lambda) # importance samples

func <- samp^k * dgamma(samp, shape = alpha, rate = beta) / dexp(samp, rate

= lambda)

# Plotting the running average

plot(1:N, cumsum(func)/(1:N), type = ’l’, xlab = "N", ylab = "Running

average")

abline(h = truth, col = "red")
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2 Questions to think about

1. Check what happens with β = λ in this simulation.

2. Why would a CLT be useful here?

3. How would we check whether this importance sampler is better than IID Monte
Carlo?
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