
MTH 511a - 2020: Lecture 12

Instructor: Dootika Vats

The instructor of this course owns the copyright of all the course materials. This lecture

material was distributed only to the students attending the course MTH511a: “Statistical

Simulation and Data Analysis” of IIT Kanpur, and should not be distributed in print or

through electronic media without the consent of the instructor. Students can make their own

copies of the course materials for their use.

1 Importance Sampling

1.1 Basic/simple importance sampling

1.1.1 Intuition

Recall from the last lecture that for a distribution π, and a function h, interest is in
estimating

θ =

∫
X
h(x)π(x)dx .

The importance sampling estimator obtains Z1, . . . , ZN ∼ G, where G is a proposal
distribution, then

θ̂g =
1

N

N∑
t=1

h(Zt)π(Zt)

g(Zt)
.

Let

w(Zt) =
π(Zt)

g(Zt)

when w are the weights and θ̂g is a weighted average of of h(Zt). Intuitively, this means
that depending on how likely a sampled value is for π and g, a weight is assigned to
that value. In the plot below, when values on the extreme left are proposed, those
values are in an area of high probability for π, but unlikely to be proposed under G,
thus they are assigned a large weight. Similarly, values that are likely under G but
relatively less likely under π are assigned smaller weights.
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1.1.2 Optimal proposals

How do we choose the importance distribution g? Note that, one reason to use impor-
tance sampling would be to obtain smaller variance estimators than the original. So,
if we can choose g such that σ2

g is minimized that would be ideal. Let’s see this term:

σ2
g = Varg

(
h(Z)π(Z)

g(Z)

)
= Eg

[
h(Z)2π(Z)2

g(Z)2

]
− θ2 =

∫
X

h(z)2π(z)2

g(z)
dz︸ ︷︷ ︸

A

−θ2

For the above to be small, term A should be close to θ2.

Theorem 1. The density g∗ that minimizes σ2
g is

g∗(z) =
|h(z)|π(z)

Eπ [|h(x)|]

as long as
∫
|h(x)|π(x)dx 6= 0.

2



Proof. The second moment

θ2 + σ2
g∗

= Eg∗

[(
h(Z)π(Z)

g∗(Z)

)2
]

=

∫
X

h(z)2π(z)2

g∗(z)2
g∗(z)dz

=

∫
X

h(z)2π(z)2

|h(z)|π(z)
· Eπ [|h(x)|] dz

= Eπ [|h(x)|]
∫
X
|h(z)|π(z)dz

=

[∫
X
|h(z)|π(z)dz

]2
=

[∫
X

|h(z)|π(z)

g(z)
g(z)dz

]2
for any other g

=

(
Eg

[
|h(z)|π(z)

g(z)

])2

≤ Eg

[
h(z)2π(z)2

g2(z)

]
By Jensen’s inequality: for a convex function φ, φ(E[x]) ≤ E(φ(x))

= θ2 + σ2
g

⇒ σ2
g∗ ≤ σ2

g .

Since this is true for all g, this implies that g∗ produces the smallest σ2
g∗

Example 1 (Gamma distribution). Consider estimating moments of a Gamma(α, β)
distribution. We actually know the optimal importance distribution here! For estimat-
ing the kth moment

g∗(z) ∝ |h(z)|π(z)

= |xk|xα−1 exp {−βx}
= xα+k−1 exp {−βx} .

So the optimum importance distribution is Gamma(α+k, β). The variance in this case
of the estimator will be quite close to 0.

###########################################

### Optimal importance sampling from Gamma

###########################################

set.seed(1)

# Function does importance sampling to estimate second moment of a gamma

distribution
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imp_gamma <- function(N = 1e3, alpha = 4, beta = 10, moment = 2, imp.alpha

= alpha + moment)

{

fn.value <- numeric(length = N)

draw <- rgamma(N, shape = imp.alpha, rate = beta) # draw imporance samples

fn.value <- draw^moment * dgamma(draw, shape = alpha, rate = beta) /

dgamma(draw, shape = imp.alpha, rate = beta)

return(fn.value) #return all values

}

N <- 1e4

# Estimate 2nd moment from Gamma(4, 10) using Gamma(4, 10)

# this is IID Monte Carlo

imp_samp <- imp_gamma(N = N, imp.alpha = 4)

mean(imp_samp)

# [1] 0.2002069

var(imp_samp)

# [1] 0.04421469

# Estimate 2nd moment from Gamma(4, 10) using Gamma(6, 10)

# this is the optimal proposal

imp_samp <- imp_gamma(N = N)

mean(imp_samp)

# [1] 0.2

var(imp_samp)

# [1] 9.620212e-33

# why is the estimate good

foo <- seq(0.001, 5, length = 1e3)

plot(foo, dgamma(foo, shape = 4, rate = 10), type= ’l’, ylab = "Density")

lines(foo, dgamma(foo, shape = 6, rate = 10), col = "red")

legend("topright", col = 1:2, lty = 1, legend = c("Reference", "Optimal"))
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# Choosing a horrible proposal

# Estimate 2nd moment from Gamma(4, 10) using Gamma(100, 10)

imp_samp <- imp_gamma(N = N, imp.alpha = 100)

mean(imp_samp) ## estimate is horrible

# [1] 1.107169e-22

var(imp_samp)

# [1] 5.679169e-41
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Example 2 (Mean of standard normal). Let h(x) = x and let π(x) be the density of
a standard normal distribution. So we are interested in estimating the mean of the
standard normal distribution.

We can use classical Monte Carlo and obtain samples from π, but we will see that using
importance sampling, we can get a better estimator of the mean!

Consider an importance distribution of N(0, σ2) for some σ2 > 0. The variance of the
importance estimator is

σ2
g + θ2 = σ2

g

=

∫ ∞
−∞

h(x)2π(x)2

g(x)
dx

=

∫ ∞
−∞

x2
σ√
2π

exp

{
x2

2σ2
− x2

}
dx

= σ

∫ ∞
−∞

x2
1√
2π

exp

{
−x

2

2

(
2− 1

σ2

)}
dx

=
σ√

2− σ−2

∫ ∞
−∞

x2N(0, (2− σ−2)−1) if σ2 > 1/2

=
σ

(2− σ−2)3/2
if σ2 > 1/2

else variance is infinite. Also, minimizing the variance:

arg min
σ>
√

1/2

σ

(2− σ−2)3/2
=
√

2 .

Thus the optimal proposal has standard deviation σ =
√

2, not 1! Also, at σ2 = 2, the
variance is .7698 which is less than 1.

1.1.3 Questions to think about

• Does this mean that N(0, 2) is the optimal proposal for estimating the mean of
a standard normal?

• What is the optimal proposal within the class of Beta proposals for estimating
the mean of a Beta distribution?
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