
MTH 511a - 2020: Lecture 14

Instructor: Dootika Vats

The instructor of this course owns the copyright of all the course materials. This lecture

material was distributed only to the students attending the course MTH511a: “Statistical

Simulation and Data Analysis” of IIT Kanpur, and should not be distributed in print or

through electronic media without the consent of the instructor. Students can make their own

copies of the course materials for their use.

We have learned a fair amount about sampling from various distributions and esti-
mating integrals. For the next few weeks we will focus our attention to optimization
methods for certain statistical procedures.

One common use of optimization in statistics is when obtaining a maximum likelihood
estimator (MLE) for a parameter. Thus, we first introduce MLE below briefly, before
going into optimization methods.

1 Maximum Likelihood Estimation

Suppose X1, X2, . . . , Xn is a random sample from a distribution with density f(x|θ).
The “x given θ” implies that given a particular value of θ, f(·|θ) defines a density.

The parameter θ can be a vector of parameters. After having obtained real data, from
F , we want to

1. estimate θ

2. construct confidence intervals around the estimator of θ.

A useful method of estimating θ is the method of maximum likelihood estimation. Let
X = (X1, . . . , Xn). The idea is that we define a function L(θ|X) which measures “how
likely is a particular value of θ given the data observed” and then find the θ that
maximizes this likelihood.

This likelihood is defined as

L(θ|X) =
n∏
i=1

f(Xi|θ) .
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It is important to note that L(θ|X) is not a distribution over θ. The “most likely”
value is the value that maximizes the likelihood

θ̂MLE = arg max
θ∈Θ

L(θ|X) .

1.1 Examples

Example 1 (Bernoulli). Let X1, . . . , Xn
iid∼ Bern(p). Then the likelihood is

L(p|x) =
n∏
i=1

p(xi|p)

=
n∏
i=1

[
pxi(1− p)1−xi

]
= p

∑
xi(1− p)n−

∑
xi .

To obtain the MLE of θ, we will maximize the likelihood. Note that maximizing the
likelihood is the same as maximizing the log of the likelihood, but the calculations are
easier after taking a log. So we take a log:

⇒ l(p) := logL(p|x) =

(
n∑
i

xi

)
log p+

(
n−

n∑
i

xi

)
log(1− p)

dl(p)

dp
=

∑
xi
p
− n−

∑
xi

1− p
set
= 0

⇒ p̂ =
1

n

n∑
t=1

xi .

Verify for yourself that the second derivative is negative for this p̂. Thus,

p̂MLE =
1

n

n∑
t=1

xi .

Example 2 (Two parameter exponential). The density of a two parameter exponential
distribution is

f(x|µ, λ) = λe−λ(x−µ) x ≥ µ, µ ∈ R, λ > 0 .

We want to compute the MLEs of both λ and µ. The likelihood is

L(λ, µ|x) =
n∏
t=1

f(xi|µ, λ)

=
n∏
t=1

λe−λ(xi−µ) I(xi ≥ µ)
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= λn exp

{
−λ

(∑
i

xi − nµ

)}
I(xi ≥ µ) ∀µ .

But if X1, . . . , Xn ≥ µ⇒ min{Xi} ≥ µ. So

L(λ, µ|x) = λn exp

{
−λ

(∑
i

xi − nµ

)}
I
(

min
i
{xi} ≥ µ

)
∀µ .

We will first try to maximize with respect to µ and then with respect to λ. Note that
L(λ, µ) is an increasing function of µ within the restriction. So that the MLE of µ is
the largest value in the support of µ where µ ≤ min{Xi}. So

µ̂MLE = min
1≤i≤n

{Xi} = X(1) .

Next, note that

L(X(1), λ|x) = λn exp

{
−λ

(∑
i

Xi − nX(1)

)}
⇒ l(X(1), λ) := logL(X(1), λ|x) = n log λ− λ

(∑
Xi − nX(1)

)
⇒ d l

d λ
=
n

λ
−
(∑

Xi − nX(1)

)
set
= 0 and

d2 l

d λ2
= − n

λ2
< 0 .

So, the function is concave, thus there is a unique maximum. Set

d l

d λ
= 0

⇒ n

λ
=

n∑
t=1

Xi − nX(1)

⇒ λ̂MLE =
n∑

Xi − nX(1)

.

Why MLE?

One main reason of using MLE is that often (not always), the resulting estimators are
consistent and asymptotically normal. That is, for a general likelihood L(θ|x)

θ̂MLE
p→ θ as n→∞

and under some additional conditions, we also have

√
n(θ̂MLE − θ)

d→ N(0,Σ∗) ,
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where Σ∗ is an estimable matrix called the inverse Fisher information matrix. So if
we use MLE estimation (and after verifying certain conditions), we know that we can
construct confidence intervals around θ̂MLE. This is great!

Note: The conditions required for consistency and asymptotic normality are impor-
tant. But we will not be discussing them in this course. Please look at topics under
“Inference” for more information.

2 Regression

We will focus a lot on variants of linear regression. Hence, we focus on that specifically
here. The following is the setup in regression.

Let Y1, Y2, . . . , Yn be observations known as the response. Let xi = (xi1, . . . xip)
T ∈ Rp

be the ith corresponding vector of covariates for the ith observation. Let β ∈ Rp be
the regression coefficient so that for σ2 > 0,

Yi = xTi β + εi where εi ∼ N(0, σ2) .

Let X = (xT1 , x
T
2 , . . . , x

T
n )T . In vector form we have,

Y = Xβ + ε ∼ Nn(Xβ, σ2In) .

The linear regression model is built to estimate β, which measures the linear effect of
X on Y . There is much more to linear regression and multiple courses are required to
study all aspects of it. However, here we will just focus on the mathematical properties
and optimization tools required to study them.

Example 3 (MLE for Linear Regression). In order to understand the linear relationship
between X and β, we will need to estimate β. We have

L(β, σ2|y) =
n∏
t=1

f(yi|X, β, σ2)

=
n∏
t=1

(
1√

2πσ2

)n
exp

{
−1

2

(Y −Xβ)T (Y −Xβ)

σ2

}
⇒ l(β, σ2) := logL(β, σ2|y) = −1

2
log(2π)− n

2
log(σ2)− 1

2

(Y −Xβ)T (Y −Xβ)

σ2

Note that

(y −Xβ)T (y −Xβ) = (yT − βTXT )(y −Xβ)

= yTy − yTXβ − βTXTy + βTXTXβ

= yTy − 2βTXTy + βTXTXβ .
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Using this we have

dl

dβ
= − 1

2σ2

[
−2XTy + 2XTXβ

]
=
XTy −XTXβ

2σ2

set
= 0

dl

dσ2
= − n

2σ2
+

(y −Xβ)T (y −Xβ)

2σ4

set
= 0 .

The first equation leads to β̂MLE satisfying

XTy −XTXβ̂MLE = 0⇒ β̂MLE = (XTX)−1XTy ,

if (XTX)−1 exists. And σ̂2
MLE is

σ̂2
MLE =

(y −Xβ̂MLE)T (y −Xβ̂MLE)

n

Verify: that the second derivative is negative, and this is indeed the maximum.

Note: What if (XTX)−1 does not exist? For example, if p > n, then the number of
observations is less than the number of parameters, and since X is n × p, (XTX) is
p× p of rank n < p. So XTX is not full rank and cannot be inverted. In this case, the
MLE does not exist and other estimators need to be constructed. This is one of the
motivations of penalized regression, which we will discuss in detail.

2.1 Penalized Regression

Note that in the Linear regression setup, the MLE for β satisfied:

β̂MLE = arg min
β

(y −Xβ)T (y −Xβ)

Suppose X is such that (XTX) is not invertible, then the MLE does not exist, and
we don’t know how to estimate β. In such cases, we may used penalized likelihood,
that penalizes the coefficients β so that some of the βs are pushed towards zero. The
corresponding Xs to those small βs are essentially not important, removing singularity
from XTX. The penalized likelihood is

Q̃(β) = L(β|y) + P̃ (β) .

Here P (β) is called the penalization function.

Since the optimization of L(β|y) only depends on (y−Xβ)T (y−Xβ) term, a penalized
(negative) log-likelihood is used and the final penalized (negative) log-likelihood is

Q(β) = − logL(β|y) + P (β)

There are many ways of penalizing β and each method yields a different estimator. A
popular one is the ridge penalty.
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Example 4 (Ridge Regression). The ridge penalization term is λβTβ/2 for λ > 0 for

Q(β) =
(y −Xβ)T (y −Xβ)

2
+
λ

2
βTβ .

We will minimize Q(β) over the space of β and since we are adding a arbitrary term
that depends on the size of β, smaller sizes of β will be preferred. Small sizes of β
means X are less important, and this will eventually nullify the singularity in XTX.
The larger λ is, the more “penalization” there is for large values of β.

β̂ = arg min
β

{
(y −Xβ)T (y −Xβ)

2
+
λ

2
βTβ

}
.

To carry out the minimization, we take the derivative:

dQ(β)

dβ
=

1

2
(−2XTy + 2XTXβ) + λβ

set
= 0

⇒ (XTX + λIp)β̂ −XTy = 0

⇒ β̂ridge = (XTX + λIp)
−1XTy .

(verify second derivative is positive for yourself).

Note that (XTX + λIp) is always positive definite for λ > 0 since for any a ∈ Rp 6= 0

aT (XTX + λIp)a = aTXTXa+ λaTa ≥ 0

Thus, the final ridge solution always exists even if XTX is not invertible.

Questions to think about

1. Under the normal likelihood, what is the distribution of β̂MLE (when it exists)
and β̂ridge? Are they unbiased? Which one has a smaller variance (covariance)?

2. What other penalization functions can you think of? Recall that βTβ = ‖β‖2
2.
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