
MTH 511a - 2020: Lecture 16

Instructor: Dootika Vats

The instructor of this course owns the copyright of all the course materials. This lecture

material was distributed only to the students attending the course MTH511a: “Statistical

Simulation and Data Analysis” of IIT Kanpur, and should not be distributed in print or

through electronic media without the consent of the instructor. Students can make their own

copies of the course materials for their use.

1 Numerical optimization methods

1.1 Gradient Ascent (Descent)

For concave objective functions, Newton-Raphson is essentially the best algorithm.
However, one significant flaw in the algorithm is that information about the Hessian is
required to implement it. The Hessian (or the double derivative) may be unavailable
or difficult to calculate in some situations.

In such a case, gradient ascent (or gradient descent if the problem is a minimizing
problem) is a useful alternative as it does not require the gradient. Consider the
objective function f(θ) that we want to maximize and suppose θ∗ is the true maximum.
Then, by the Taylor series approximation at a fixed θ0

f(θ) ≈ f(θ0) + f ′(θ0)(θ − θ0) +
f ′′(θ0)

2
(θ − θ0)2

If f ′′(θ) is unavailable, consider assuming that the double derivative is a negative
constant. That is, that f is quadratic and concave. Then for a t > 0,

f(θ) ≈ f(θ0) + f ′(θ0)(θ − θ0)−
1

2t
(θ − θ0)2

Maximizing f(θ) and using this approximation would imply maximizing the right hand
side. Taking the derivative with respect to θ setting it to zero:

f ′(θ0)−
θ − θ0
t

set
= 0⇒ θ = θ0 + tf ′(θ0) .
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The algorithm essentially does a locally-quadratic approximation at the current point
θ(k) and then maximizes that quadratic equation. The value of t indicates how far do
we want to jump and is a tuning parameter. If t is large, we take big jumps, as opposed
to t small, where the jumps are smaller.

Given a θ(k), the gradient ascent algorithm does the update

θ = θ(k) + tf ′(θ(k)) ,

for t > 0. The iteration can be stopped when |θ(k+1) − θ(k)| < ε for ε > 0.

For concave functions, gradient ascent converges to the global maxima. In
general, gradient ascent always converges to a local maxima.

Example 1 (Location Cauchy). Recall the location Cauchy example in the previous
lecture where the likelihood is not concave. We can implement gradient ascent here
and since gradient ascent always converges to a local maxima, it does something more
reasonable here (we set t = .3) (the codes have been shared)
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If we rerun this with the red starting values and t = 1, this is too much of a jump size,
and the optimization starts oscillating between two points.
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So it is really important to try different step sizes t when implementing gradient ascent.
There are other solutions to this like adaptive step sizes which we will not discuss.

Gradient Ascent in Higher Dimensions

By a multivariate Taylor series expansion, we can obtain a similar motivation and the
iteration in the algorithm is:

θ(k+1) = θ(k) + t∇f(θ(k)) .

Example 2 (Logistic regression). We have studied linear regression for modeling con-
tinuous responses. But when Y is a response of 1s and 0s (Bernoulli) then assuming
the Y s are normally distributed is not appropriate. Instead, when the ith covariate is
(xi1, . . . , xip)

T , then for β ∈ Rp logistic regression assumes the model

Yi ∼ Bern

(
ex

T
i β

1 + ex
T
i β

)
.

In other words, the probability that any response takes the value 1 is

Pr(Yi = 1) =
ex

T
i β

1 + ex
T
i β

:= pi .

Our goal is to obtain the MLE of β. As usual, first we write down the log-likelihood.

L(β|Y ) =
n∏
i=1

(pi)
yi (1− pi)1−yi

⇒ l(β) =
n∑
i=1

yi log pi +
n∑
i=1

(1− yi) log(1− pi)
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=
n∑
i=1

log(1− pi) +
n∑
i=1

yi (log pi − log(1− pi))

= −
n∑
i=1

log
(
1 + exp(xTi β)

)
+

n∑
i=1

yix
T
i β

Taking derivative:

∇l(β) =
n∑
i=1

xi

[
yi −

ex
T
i β

1 + ex
T
i β

]
set
= 0

An analytical solution here is not possible, thus a numerical optimization tool is re-
quired. Note: You can verify by studying the Hessian that this likelihood function
is indeed concave and thus we can use either Newton-Raphson or Gradient Ascent
successfully. We will use gradient ascent, and you should on your own, implement
N-R.

################################################

## MLE for logistic regression

## Using gradient ascent

################################################

library(mcmc) #to load a dataset

data(logit)

head(logit) # y is response and 4 covariates

# y x1 x2 x3 x4

# 1 0 -0.162 -0.348 -0.524 -0.312

# 2 1 0.187 -0.410 0.362 -0.366

# 3 1 0.160 1.649 -0.664 0.051

# 4 1 1.536 0.084 0.403 1.732

# 5 1 -0.162 -0.061 0.192 0.256

# 6 0 -2.855 -3.341 -2.549 -1.461

y <- logit$y

X <- as.matrix(logit[, 2:5])

p <- dim(X)[2]

f.gradient <- function(y, X, beta)

{

beta <- matrix(beta, ncol = 1)

pi <- exp(X %*% beta) / (1 + exp(X%*%beta))

rtn <- colSums(X* as.numeric(y - pi))

return(rtn)

}

store.beta <- matrix(0, nrow = 1, ncol = p)
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beta_k <- rep(0, p) # start at all 0s

t <- .1

tol <- 1e-5

iter <- 0

diff <- 100

while((diff > tol) && iter < 100) #not too many iterations

{

iter <- iter+1

old <- beta_k

beta_k = old + t* f.gradient(y = y, X= X, beta = old)

store.beta <- rbind(store.beta, beta_k)

diff <- sum( (beta_k - old)^2)

}

iter # number of iterations

#[1] 10

beta_k # last step in the optimization

# x1 x2 x3 x4

#0.7169059 0.8792911 0.4231445 0.5884162

1.2 Questions to think about

1. Can you implement Newton-Raphson for the logistic regression problem? Which
of the two algorithms is better?

2. What might be a way to adapt the step size t in a problem?
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