
MTH 511a - 2020: Lecture 17

Instructor: Dootika Vats

The instructor of this course owns the copyright of all the course materials. This lecture

material was distributed only to the students attending the course MTH511a: “Statistical

Simulation and Data Analysis” of IIT Kanpur, and should not be distributed in print or

through electronic media without the consent of the instructor. Students can make their own

copies of the course materials for their use.

1 Numerical optimization methods

The two optimization techniques we’ve learned have utilized derivatives. But what if
the objective function is not differential? Or the derivatives are too complicated to
write down explicitly. What do we do then?

1.1 MM Algorithm

Consider obtaining a solution to

θ∗ = arg max
θ
f(θ)

The “Minorize/Maximize algorithm” algorithm at a current iterate, finds a “minoriz-
ing” function at that point, and then maximizes that minorizing function. That is, at
any given iteration, consider a minorizing function f̃(θ|θ(k)) such that:

• f(θk) = f̃(θk|θk)

• f(θ) ≥ f̃(θ|θk) for all other θ

Then, θ(k+1) is obtained as

θ(k+1) = arg max
θ
fk(θ|θ(k)) .

1

The algorithm has the ascent property in that every update increases the objective
value. That is

f(θ(k+1)) ≥ f̃(θ(k+1) | θ(k))
≥ f̃(θ(k) | θ(k))
= f(θ(k)) .

When minimizing an objective function, we the opposite: we find a majorizing function
and then minimize it.

1.1.1 Bridge Regression (including Lasso)

Example 1 (Bridge regression). Recall the case of the penalized (negative) log-likelihood
problem during ridge regression. Ridge regression can be generalized as bridge regres-
sion when the objective function is

QB(β) =
(y −Xβ)T (y −Xβ)

2
+
λ

α

p∑
i=1

|βi|α ,

for α ∈ [1, 2] and λ > 0. When α = 2, this is ridge regression, and when α = 1, this
is lasso regression. Different choices of α, lead to different style of penalization. For a
given λ, smaller values of α push the estimates closer towards zero. Specifically, Lasso
(α = 1) is quite popular.

We need to find arg minQB(β). First note that, (y−Xβ)T (y−Xβ) is a convex function
and |βi|α is convex for α ≥ 1. So the objective function is convex, thus a global solution
exists.

Note that for α = 1, the objective function is not differentiable at 0, and for α ∈
(1, 2), the function is not twice differentiable at 0. Thus, using Newton-Raphson and
gradient descent is not possible. We will instead use an MM algorithm. Since this is a
minimization problem, we will find a majorizing function.

We will try to find a majorizing function that upper bounds the objective QB(β), and
then minimize the majorizing function. Optimizing the majorizing function will again
require derivatives, so we want to get rid of the absolute value.

Consider a function h(u) = uα/2 for u ≥ 0 and see that

h′(u) =
α

2
uα/2−1

and
h′′(u) =

α

2

(α
2
− 1
)
uα/2−2 ≤ 0

so h(u) is a concave function. For a concave function, by the “Rooftop theorem”the
first order Taylor series creates a tangent line that is above the function. Thus for a
u∗,

h(u) ≤ h(u∗) +
α

2
(u∗)α/2−1(u− u∗) .

2

For any given iteration of the optimization given β(k), taking u = |βi|2 and u∗ = |βi,(k)|2
where βi is the ith component of the vector β. Then,

|βi|α ≤ |βi,(k)|α +
α

2
|βi,(k)|α−2

(
β2
i − β2

i,(k)

)
= |βi,(k)|α −

α

2
|βi,(k)|α +

α

2
|βi,(k)|α−2β2

i

= constants +
mj

2
β2
j

where mj = α|βi,(k)|α−2. You will see that the constants will not be important.

Now that we have bounded the the penalty function, we have an upper bound on the
full objective function!

So, the objective function can be bounded above by:

QB(β) ≤ constants +
(y −Xβ)T (y −Xβ)

2
+

λ

2α

p∑
j=1

mjβ
2
j .

Why is this upper bound useful?

• Remember that at any given iteration, the optimization is with respect to β.
Thus, the constants are truly constants.

• The upper bound has no absolute values!

• Recall that we obtained the upper bound function using a derivative of h(u).
This derivative is not defined at u = 0. However, we’re only using the derivative
function at u∗ = |βi,(k)|2, which is the previous iteration. So as long as we DO
NOT START at zero, this upper bound is valid.

• Finally, the upper bound is easily optimizable, as it is similar to ridge. (See
below)

The objective function is similar to ridge regression, except it is “weighted”. Following
the same steps as in ridge optimization, you can show that the minimum occurs at

β(k+1) = (XTX + λM(k))
−1XTy ,

where M(k) = diag(m1,m2, . . . ,mp). Note that here M(k) is what drives the direction
of the optimization.

##

Bridge regression and the MM algorithm

Compare for different values of alpha

##

set.seed(1)

n <- 100

p <- 5

3

beta.star <- c(0,0,0,rnorm(p-3, sd = 1)) # larger variance than exercise 4.

beta.star # to output

[1] 0.0000000 0.0000000 0.0000000 -0.6264538 0.1836433

Making design matrix, first column is 1

X <- cbind(1, matrix(rnorm(n*(p-1)), nrow = n, ncol = (p-1)))

Generating response

y <- X %*% beta.star + rnorm(n, mean = 0, sd = 1)

###############

First MLE

###############

MLE of beta

beta.mle <- solve(t(X) %*%X) %*% t(X) %*%y

Bridge solutions

alpha.vec <- c(1, 1.5, 1.8)

lambda <- 10

beta.bridge <- matrix(0, nrow = p, ncol = 3)

tol <- 1e-5

for(i in 1:length(alpha.vec)) # loop for each alpha

{

current <- solve(t(X) %*%X + diag(lambda,p)) %*% t(X) %*%y # start at

ridge solution

iter <- 0

diff <- 100

while((diff > tol) && iter < 1000)

{

iter <- iter + 1

M matrix diagonals

ms <- as.vector(lambda/2 *(abs(current))^(alpha.vec[i] - 2))

MM update -- using qr.solve for numerical stability

update <- qr.solve(t(X) %*% X + diag(ms, p)) %*% t(X) %*% y

diff <- sum((current - update)^2)

current <- update

}

beta.bridge[,i] <- current

}

Comparing MLE and Bridge for different alpha values

(beta.ridge <- solve(t(X) %*%X + diag(lambda,p)) %*% t(X) %*%y)

4

cbind(beta.mle, beta.bridge, beta.ridge)

[,1] [,2] [,3] [,4] [,5]

#[1,] -0.09512113 -0.0359535 -0.0760993 -0.08483116 -0.08223668

#[2,] 0.20373809 0.1302566 0.1732737 0.18477742 0.17764152

#[3,] 0.16523932 0.1144513 0.1467874 0.15499924 0.15213858

#[4,] -0.62238012 -0.5699536 -0.5834113 -0.58933128 -0.56569626

#[5,] 0.23165539 0.1675901 0.2017733 0.21170945 0.20262618

beta.star

#[1] 0.0000000 0.0000000 0.0000000 -0.6264538 0.1836433

2 Questions to think about

• How do you think we can choose α in any given problem?

• Can you try the MM algorithm for the Location-Cauchy example?

• Will the MM algorithm always converge to a global maxima?

5

