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1 The EM algorithm

An important application of the MM algorithm is the Expectation-Maximization (EM)
algorithm. However, the EM algorithm is an integral part of statistical algorithms, and
hence we study it separately. We will first motivate the EM algorithm with an example.

1.1 Gaussian mixture likelihood

Suppose X1, X2, . . . , Xn ∼ F , where F is mixture of normal distribution so that the
density is:

f(x|µ1, µ2, σ
2
1, σ

2
2, π

∗) = π∗f1(x|µ1, σ
2
1) + (1− π∗)f2(x|µ2, σ

2
2) ,

where fi(x|µi, σ2
i ) is the density of N(µi, σ

2
i ) distribution for i = 1, 2. Given the data,

we will to find the maximum likelihood estimates of all 5 parameters: (µ1, µ2, σ
2
1, σ

2
2, π

∗).
That is, we want to maximize:

l(µ1, µ2, σ
2
1, σ

2
2, π

∗|X) =
n∑
i=1

log f(xi|µ1, µ2, σ
2
1, σ

2
2, π

∗)

=
n∑
i=1

log
[
π∗f1(x|µ1, σ

2
1) + (1− π∗)f2(x|µ2, σ

2
2)
]
.

There is no analytical solution to the above optimization problem and we have to
resort to numerical techniques. Instead of trying to use gradient-based tools, we use a
common trick called the latent variable or missing data trick.
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Recall is the data likelihood is a mixture of Gaussians. So with probability π∗, any
observed Xi is from f1 and with probability 1− π∗ it is from f2. Suppose we have the
information that xi is coming from which of the two populations. Thus, suppose the
complete data was of the form

(X1, Z1), (X2, Z2), . . . , (Xn, Zn) ,

where each Zi = k means that Xi is from population k. If this complete data is
available to us, then first note that the joint density is

f(xi, zi = k) = f(xi|zi = k) Pr(Zi = k) .

Suppose D1 = {i : 1 ≤ i ≤ n, zi = 1} and D2 = {i : 1 ≤ i ≤ n, zi = 2}, with cardinality
d1 and d2 respectively. The set D1 and D∈ have the indices of the data that belong to
each component of the mixture. Then the likelihood from the full data is

L(µ1, µ2, σ
2
1, σ

2
2, π

∗|X)

=
n∏
i=1

f(xi, zi)

=
∏
i∈D1

f(xi, zi = 1)
∏
j∈D2

f(xi, zi = 2)

=
∏
i∈D1

f(xi|zi = 1) Pr(Zi = 1)
∏
i∈D2

f(xi|zi = 2) Pr(Zi = 2)

=
∏
i∈D1

[
π∗f1(xi|µ1, σ

2
1)
] ∏
j∈D2

[
f2(xi|µ2, σ

2
2)(1− π∗)

]
= (π∗)d1 (1− π∗)d2

∏
i∈D1

[
f1(xi|µ1, σ

2
1)
] ∏
i∈D2

[
f2(xi|µ2, σ

2
2)
]
.

This means that the log likelihood is

⇒ logL = d1 log(π∗) + d2 log(1− π∗) +
∑
i∈D1

log f1(xi|µ1, σ
2
1) +

∑
i∈D2

log f2(xi|µ2, σ
2
2) .

This log-likelihood is in a far nicer format, so that closed-form estimates are available.

So, if the complete data was available to us, we can easily find the MLE of all the 5
parameters. Unfortunately, the Zs are usually not observed, and only the Xs have been
observed. The EM algorithm will solve this problem by estimating the unobserved zi
corresponding to each xi in an iterative manner.

We will come back this Gaussian problem again.

1.2 The Expectation-Maximization Algorithm

Suppose, we have a vector of parameters θ, and wee have observed the marginal data
X1, . . . , Xn from the complete data (Xi, Zi). The objective function is to maximize is

l(θ|X) = log

∫
f(x, z|θ)dνz ,
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where the
∫
· dνz denotes integral or summation based on whether Z is continuous or

discrete. The EM algorithm iterates through the following: Consider a starting value
θ0. Then for any k + 1 iteration

1. E-Step: Compute

q(θ; θ(k)) = EZ|x

[
log f(x, z|θ) | X = x, θ(k)

]
where the expectation is computed with respect to the conditional distribution
of Z given X = x for the current iterate θ(k).

2. M-Step: Compute
θk+1 = arg max

θ∈Θ
q(θ; θk) .

Theorem 1. The EM algorithm is an MM algorithm and thus has the ascent property.

Proof. The objective function is log f(x|θ). We will construct a minorizing function
f̃(θ|θ(k)) on this objective function and show that

f̃(θ|θ(k)) = q(θ|θ(k)) + constants.

The, maximizing f̃(θ|θ(k)) is equivalent to maximizing q(θ|θ(k)). Let

f̃(θ|θ(k)) =

∫
z

log{f(x, z|θ)}f(z|x, θ(k))dz+ log f(x|θ(k))−
∫
z

log{f(x, z|θ(k))}f(z|x, θ(k))dz .

(The proof technique is setup for continuous Z, but the same proof works for discrete
Z as well).

Naturally, we can see that at θ = θ(k), f̃(θ|θ(k)) = f(θ(k)). We will now show that
minorizing property.

f̃(θ|θ(k))

=

∫
z

log{f(x, z|θ)}f(z|x, θ(k))dz + log f(x|θ(k))−
∫
z

log{f(x, z|θ(k))}f(z|x, θ(k))dz

=

∫
z

log{f(x, z|θ)}f(z|x, θ(k))dz +

∫
z

log f(x|θ(k))f(z|x, θ(k))dz −
∫
z

log{f(x, z|θ(k))}f(z|x, θ(k))dz

=

∫
z

log

{
f(x, z|θ) f(x|θ(k))

f(x, z|θ(k))

}
f(z|x, θ(k))

=

∫
z

log

{
f(x, z|θ) f(x|θ(k))

f(x, z|θ(k))

}
f(z|x, θ(k)) + log f(x|θ)− log f(x|θ)

=

∫
z

log

{
f(x, z|θ) f(x|θ(k))

f(x, z|θ(k))f(x|θ)

}
f(z|x, θ(k)) + log f(x|θ)
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By Jensen’s inequality,

≤ log

[∫
z

{
f(x, z|θ) f(x|θ(k))

f(x, z|θ(k))f(x|θ)

}
f(z|x, θ(k))

]
+ log f(x|θ)

= log

[∫
z

f(z|x, θ)
f(z|x, θ(k))

f(z|x, θ(k))

]
+ log f(x|θ)

= log

∫
z

f(z|x, θ)dz + log f(x|θ)

= log f(x|θ) .

Thus, f̃(θ|θ(k)) is a minorizing function, and the next iterate is

θ(k+1) = arg max
θ
f̃(θ|θ(k)) = arg max

θ
q(θ|θ(k))

1.3 (Back to) Gaussian mixture likelihood

We will look at the general setup of C groups, so that the density for X1, . . . , Xn is

f(x|θ) =
C∑
j=1

πjfj(x | µj, σ2
j ) ,

where θ = (µ1, . . . , µC , σ
2
1, . . . , σ

2
C , π1, . . . , πC−1). The setup is the same as before, and

suppose we the complete data (Xi, Zi) where Xi | Zi = c ∼ N(µc, σ
2
c ) and Pr(Zi = c) =

πc.

To implement the EM algorithm for this example, we first need to find q(θ|θ(k)). First
recall the conditional distribution of Z|X is

Pr(Z = c|X = xi) =
f(xi|Z = c) Pr(Z = c)

f(xi)

fc(xi|µc, σ2
c )πc∑C

j=1 fj(xi|µj, σ2
j )πj

:= γi,c .

So for any kth iterate with current step θ(k) = (µ1,k, µ2,k, σ
2
1,k, σ

2
2,k, π

∗
k), we have

Pr(Z = c|X = x, θ(k)) =
fc(x|µc,k, σ2

c,k)πc,k∑
j=1,2 fj(x|µj,k, σ2

j,k)πj,k
:= γi,c,k .

NOTE: γi,c are itself quantities of interest since they tell us the probability of the ith
observation being in class c. This helps in classifying the observed data.

Next,

q(θ|θ(k)) = EZ|x
[
log f(x, z|θ) | X = x, θ(k)

]
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= EZ|x

[
n∑
i=1

log f(xi, zi|θ) | X = x, θ(k)

]

=
n∑
i=1

EZi|xi
[
log f(xi, zi|θ) | X = xi, θ(k)

]
=

n∑
i=1

C∑
c=1

log
{
fc(xi|µc, σ2

c )πc
} fc(xi|µc,k, σ2

c,k)πc,k∑
j=1,2 fj(xi|µj,k, σ2

j,k)πj,k
.

Although we won’t be able to write the full expectation in closed form, we don’t need
to since all we need in the next step is to maximize the expectation. So to implement
the E-step we need to update

γi,c,k =
fc(xi|µc,k, σ2

c,k)πc,k∑
j=1,2 fj(xi|µj,k, σ2

j,k)πj,k
.

This completes the E-step. We move on to the M-step. To complete the M-step

θ(k+1) = arg max q(θ|θ(k)) .

q(θ|θ(k)) =
n∑
i=1

C∑
c=1

{
log fc(xi|µc, σ2

c ) + log πc
}
γi,c,k

=
n∑
i=1

2∑
c=1

[
−1

2
log(2π)− 1

2
log σ2

c −
(Xi − µc)2

2σ2
c

+ log πc

]
γi,c,k

= const− 1

2

n∑
i=1

C∑
c=1

log σ2
cγi,c,k −

n∑
i=1

C∑
c=1

(Xi − µc)2

2σ2
c

γi,c,k +
n∑
i=1

C∑
c=1

log πc γi,c,k .

Taking derivatives and setting to 0, we get For any c,

∂q

∂µc
=

n∑
i=1

(xi − µc) γi,c,k
σ2
c

set
= 0 ⇒ µc,(k+1) =

∑n
i=1 γi,c,k xi∑n
i=1 γi,c,k

(1)

∂L

∂σ2
c

= −1

2

n∑
i=1

γi,c,k
σ2
c

+
n∑
i=1

(Xi − µc)2

2σ4
c

γi,c,k
set
= 0 ⇒ σ2

c,(k+1) =

∑n
i=1 γi,c,k(xi − µ2

c,(k+1))∑n
i=1 γi,c,k

(2)

For πc note that the optimization requires a constraint, since
∑

c πc = 1. So we will
use Lagrange multipliers. The objective function is

q̃(θ|θ(k)) = q(θ|θ(k))− λ

(
C∑
c=1

πc − 1

)
.
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Taking derivative

⇒ ∂q̃

∂πc
=

n∑
i=1

γi,c,k
πc
− λ set

= 0

⇒πc =
n∑
i=1

γi,c,k
λ

⇒
C∑
c=1

πc =
C∑
c=1

n∑
i=1

γi,c,k
λ

⇒1 =
1

λ

n∑
i=1

1

⇒λ = n

⇒πc,(k+1) =
1

n

n∑
i=1

γi,c,k . (3)

Thus equations (1) and (3) provide the iterative updates for the parameters.

1.3.1 Old Geyser Eruptions

In Yellowstone National Park, Wyoming, USA, there is geyser that erupts quite often.
The eruptions are either long or short. Below in data faithful, there are eruption
times of this geyser.

################################################

## Old Faithful Geyser data

################################################

data(faithful)

head(faithful)

# eruptions waiting

#1 3.600 79

#2 1.800 54

#3 3.333 74

#4 2.283 62

#5 4.533 85

#6 2.883 55

x <- faithful$eruptions

hist(x, breaks = 30, main = "Eruptions")
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From the looks of it, the eruption time can be is bimodal. There’s a mode at around 2
seconds and another at around 4.5 seconds. We would like to model the eruption with
a Gaussian mixture model and estimate the following quantities (although notice that
the mode on the left is slightly asymmetric so Gaussianity is not a great assumption
there):

• What is the probability that any given eruption is a short eruption. (π1)

• If it is a short eruption, what is the average time? What is the average time for
a long eruption. (µ1, µ2)

• How much variability is there in these eruption times (σ2
1, σ

2
2)?

We will use EM algorithm to obtain the MLE for these parameters.

################################################

## EM Algorithm for the Old Faithful Geyser data

################################################

# (pi_1, mu_1, mu_2, sigma^2_1, sigma^2_2)

theta <- c(.6, 1,5, 1, 1) # starting values

current <- theta

diff <- 100

tol <- 1e-5

iter <- 0

store <- current

while(diff > tol)

{

iter <- iter + 1

# E step: find gamma_{i,c,k} for just c = 1, since for c = 2 is just 1-Ep

Ep <- current[1]*dnorm(x, current[2], sqrt(current[4]))/
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(current[1]*dnorm(x, current[2], sqrt(current[4])) + (1 -

current[1])*dnorm(x, current[3], sqrt(current[5])))

# M-step

theta[1] <- mean(Ep)

theta[2] <- sum(Ep*x) / sum(Ep)

theta[3] <- sum((1-Ep)*x) / sum(1-Ep)

theta[4] <- sum(Ep*(x - theta[2])^2) / sum(Ep)

theta[5] <- sum((1-Ep)*(x - theta[3])^2) / sum(1-Ep)

diff <- max( abs(theta - current)) # choosing absolute difference here

current <- theta

store <- rbind(store, theta)

}

current # final estimates

# [1] 0.34840894 2.01861785 4.27335295 0.05552515 0.19101167

So the above are the final estimates: about 35% of the eruptions are short. Short
eruptions have mean 2.02 and variance .0555 and long eruptions have mean 4.27 and
variance .19.

Recall that, as a bonus, we also get estimates of the probability that each observed
data point is in which class (γi,c)

# Final estimates of the probability

# that each observation is in Class C.

Prob.Z <- current[1]*dnorm(x, current[2], sqrt(current[4]))/

(current[1]*dnorm(x, current[2], sqrt(current[4])) + (1 -

current[1])*dnorm(x, current[3], sqrt(current[5])))

head(round(Prob.Z, 4))

WARNING: The EM algorithm often does label switching. That is, it doesn’t know
which class we are calling 1 and which class we call 2. So from one starting point to the
other, individual probabilities will change, although probabilities within a same group
will remain same

Below is a plot of the what the iterations of the algorithm fit and how it converged. I
have overlayed the histogram with fitted mixture densities at each iteration k:

π∗1,(k)f(x|µ1,(k), σ
2
1,(k)) + (1− π∗1,(k))f(x|µ2,(k), σ

2
2,(k)) .

I also add points on the x axis indicating the classification obtained by γi,c. If estimated
γ̂i,c < .5 I assign them color black and if estimated γ̂i,c > .5, I assign it color green.

# Make plot of iterative model fits

for(i in 1:dim(store)[1])
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{

test.x <- seq(min(x), max(x), length = 1000)

test.y <- store[i,1]* dnorm(test.x, mean = store[i,2], sd =

sqrt(store[i,4])) + (1-store[i,1]) *dnorm(test.x, mean = store[i,3],

sd = sqrt(store[i,5]))

lines(test.x, test.y, col = rgb(1,0,0, alpha = .5))

}

lines(test.x, test.y, col = rgb(0,0,1, alpha = 1))

# add color

color <- 1*(Ep < .5) + 3*(Ep >= .5)

points(x, rep(0, length(x)), pch = 16, col = color)
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You can see how our model fitted progressed from bad fit in the beginning to slowly
converging to reasonable estimates. Note: the left mode is still a little skewed, and
that is because the assumption of normality on that mode is not ideal.

2 Questions to think about

• The faithful dataset has waiting times between eruptions as well. You can do
a similar model on the waiting time.

• What happens when you change the starting values drastically?

• Can you setup the EM algorithm for multivariate normal distributions?
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