
MTH 511a - 2020: Lecture 19

Instructor: Dootika Vats

The instructor of this course owns the copyright of all the course materials. This lecture

material was distributed only to the students attending the course MTH511a: “Statistical

Simulation and Data Analysis” of IIT Kanpur, and should not be distributed in print or

through electronic media without the consent of the instructor. Students can make their own

copies of the course materials for their use.

1 The EM algorithm

Recall, the objective function to maximize is

l(θ|X) = log

∫
f(x, z|θ)dνz ,

The EM algorithm iterates through the following: Consider a starting value θ0. Then
for any k + 1 iteration

1. E-Step: Compute

q(θ; θ(k)) = EZ|x

[
log f(x, z|θ) | X = x, θ(k)

]
where the expectation is computed with respect to the conditional distribution
of Z given X = x for the current iterate θ(k).

2. M-Step: Compute
θk+1 = arg max

θ∈Θ
q(θ; θk) .

We will look at another EM algorithm example.
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1.1 Censored data example

A light bulb company is testing the failure times of their bulbs and know that failure
times follow Exp(λ) for some λ > 0. They test n light bulbs, so the failure time of
each light bulb is

Z1, . . . , Zn
iid∼ Exp(λ) .

However, officials recording these failure times walked into the room only at time T
and observed that m < n of the bulbs had already failed. Their failure time cannot be
recorded. So observed data is

E1 = 1, . . . , Em = 1, Zm+1, Zm+2, . . . , Zn ,

where Ei = I(Zi < T ). Our goal is to find the MLE for λ. Note that

• If we ignore the first m light bulbs, then not only do we have a smaller sample
size, but we also have a biased sample which do not contain the bottom tail of
the distribution of failure times.

So we must account for the “missing data”. First, we find the observed data likelihood.

Note that Ei ∼ Bern(p) where p = Pr(Ei = 1) = Pr(Zi ≤ T ) = 1 − e−λT (from the
CDF of an exponential distribution). So,

L(λ|E1, . . . , Em, Zm+1, . . . , Zn) =
m∏
i=1

Pr(Ei = ei) ·
n∏

j=m+1

f(zj|λ)

=
m∏
i=1

(
e−λT

)1−ei (
1− e−λT

)ei n∏
j=m+1

λ exp {−λZj}

= (1− e−λT )mλn−m exp

{
−λ

n∑
j=m+1

Zj

}
.

Closed-form MLEs are difficult here, and some sort of numerical optimization is useful.
We will resort to the EM algorithm, that has the added advantage that the estimates
of Z1, . . . , Zm may be obtained as well.

Also, note that if we choose to “throw away” the censored data, then the likelihood is

Lbad(λ|Zm+1 . . . Zn) = λn−m exp

{
−λ

n∑
j=m+1

Zj

}

and the MLE is

λMLE, bad =
n−m∑n
j=m+1 Zj

The above MLE is a bad estimator since the data thrown away is not censored at
random, and in fact, all those bulbs fused early. So the bulb company cannot just
throw that data away, as that would be dishonest!
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Now we implement the EM algorithm for this example. First, note that the complete
unobserved data is Z1, . . . , Zn and the complete log likelihood is

log f(z|λ) = log

{
n∏
i=1

λe−λzi

}
= n log λ− λ

n∑
i=1

Zi .

In order to implement the EM algorithm, we need the distribution of

Pr(unobserved | observed) = f(Z1, . . . , Zm | E1, . . . , Em, Zm+1, . . . , Zn)

= f(Z1, . . . , Zm | E1, . . . , Em)

=
m∏
i=1

f(Zi | Ei)

=
m∏
i=1

f(Zi | Zi ≤ T )

=
m∏
i=1

λe−λzi

1− e−λT
I(zi ≤ T ) .

Further,

E [Zi|Ei = 1] = E [Zi|Zi ≤ T ]

=

∫ T

0

zi
λe−λzi

1− e−λT
= · · · = 1

λ
− Te−λT

1− e−λT
.

Implementing the EM steps now

1. E-Step: In the E-step, we find the expectation of the complete log likelihood
under Z1:m|(E1:m, Z(m+1):n). That is

q(λ | λ(k)) = E
[

log f(Z1, . . . , Zn|λ) | E1, . . . , Em, Zm+1, . . . , Zn

]
= n log λ− λEλ(k)

[
n∑
i=1

Zi|E1 = 1, . . . , Em = 1, Zm+1, . . . , Zn

]

= n log λ− λ
n∑

i=m+1

Zi − λ
m∑
i=1

[E[Zi|Zi ≤ T ]

2. M-Step: To implement the M-step:

λ(k+1) = arg max
λ

[
n log λ− λ

n∑
i=m+1

Zi − λ
m∑
i=1

[E[Zi|Zi ≤ T ] .

]
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It is then easy to show that the M step makes the following update (show by
yourself):

λ(k+1) =
n∑n

i=m+1 Zi +
∑m

i=1 [E[Zi|Zi ≤ T ]
=

n∑n
i=m+1 Zi +m

[
1

λ(k)

− Te−λ(k)T

1− e−λ(k)T

]
################################################

## EM Algorithm for the Censored exponential data

################################################

# First we will simulate data

set.seed(10)

m <- 60

n <- 100

lam <- .45

z <- rexp(n, rate = lam)

T <- 1

# Observed

obs.z <- z[(z > T)]

hist(z, breaks = 30, main = "Complete failure times with observed times as

dots")

points(obs.z,rep(0, length(obs.z)), col = 2, pch = 16)

abline(v = 1, col = 2)
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diff <- 100

tol <- 1e-5

iter <- 0

current <- 1/mean(obs.z) # good starting values
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lam.k <- current

store.z <- T

while(diff > tol)

{

iter <- iter + 1

# E-step

Estep <- 1/current - T*exp(-current * T)/(1 - exp(-current * T))

# Storing Zs

store.z <- c(store.z, Estep)

#Update

update <- n/(sum(obs.z) + m*Estep)

diff <- abs(current - update)

current <- update

lam.k <- c(lam.k, update)

}

current

# [1] 0.420317

(false.mle <- (n-m)/sum(obs.z)) # MLE if you ignore the Es (bad MLE)

#[1] 0.1904662

# Estimate of Z_i not observed (also called imputation)

(Z_unobs <- 1/current - T*exp(-current * T)/(1 - exp(-current * T)))

# [1] 0.4650763

1.2 Monte Carlo EM

Sometimes, the E-step is not analytically tractable, in which case the following step is
not obtainable.

q(θ|θ(k)) = Eθ(k) [log f(x, z|θ) | X]

Instead, we estimate this expectation using draws from Z|X via Monte Carlo. That is,
the new E-step is

q̂(θ|θ(k)) =
1

m

m∑
t=1

log(f(x, z(t))|θ) ,

where z(t) are drawn from Z|X.

Example 1 (Censored Exponential). Although EM is possible in this example, we can
choose to do MCEM. The original steps are:
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1. E-Step:

q(λ | λ(k)) = n log λ− λ
n∑

i=m+1

Zi − λ
m∑
i=1

Eλ(k) [Zi|Zi ≤ T ]

2. M-Step: It is then easy to show that the M step makes the following update:

λ(k+1) =
n∑n

i=m+1 Zi +m
∑m

i=1 Eλ(k) [Zi|Zi ≤ T ]

Instead, we can estimate Eλ(k) [Zi|Zi ≤ T ] using Monte Carlo:

1. MCE-Step: Draw z(1) = (z
(1)
1 , . . . z

(1)
m ), . . . , z(K) from Z|Z ≤ T (from a trun-

cated exponential).

q(λ | λ(k)) = n log λ− λ
n∑

i=m+1

Zi − λ
m∑
i=1

(
1

K

K∑
t=1

z
(t)
i

)
.

2. M-Step: It is then easy to show that the M step makes the following update:

λ(k+1) =
n∑n

i=m+1 Zi +

(
1

K

K∑
t=1

z
(t)
i

) .

################################################

## Monte Carlo EM Algorithm for the

## Censored exponential data

################################################

set.seed(1)

#function draws from truncated exponential

trexp <- function(nsim, T, lambda)

{

count <- 1

samp <- numeric(length = nsim)

while(count < nsim)

{

draw <- rexp(1, rate = lambda)

if(draw <= T)

{

samp[count] <- draw

count <- count + 1

} else{

next

}

}

return(samp)
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}

diff <- 100

tol <- 1e-5

iter <- 0

current <- 2

lam.k <- current

store.z <- T

mc.size <- 100 # Monte Carlo size

while(diff > tol)

{

iter <- iter + 1

# E-step with Monte Carlo

trunExp.samples <- trexp(nsim = mc.size, T = T, lambda = current)

Estep <- mean(trunExp.samples)

#Estep <- 1/current - T*exp(-current * T)/(1 - exp(-current * T))

# Storing Zs

store.z <- c(store.z, Estep)

#Update

update <- n/(sum(obs.z) + m*Estep)

diff <- abs(current - update)

current <- update

lam.k <- c(lam.k, update)

}

current

# [1] 0.4240852

2 Questions to think about

• In Monte Carlo EM, how can you improve the expectation step?

• What is an added benefit of doing EM rather than NR or Gradient Ascent on
the observed likelihood?
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