
MTH 511a - 2020: Lecture 20

Instructor: Dootika Vats

The instructor of this course owns the copyright of all the course materials. This lecture

material was distributed only to the students attending the course MTH511a: “Statistical

Simulation and Data Analysis” of IIT Kanpur, and should not be distributed in print or

through electronic media without the consent of the instructor. Students can make their own

copies of the course materials for their use.

1 Resampling Methods

We will take a break from optimization methods to discuss methods for making infer-
ence in some of the data analysis problems we have discussed.

There are two main questions to ask:

1. How do we choose model tuning parameters? : In ridge/bridge/lasso regression,
we require choosing λ and/or α. In Gaussian mixture models, we need to choose
the number of clusters C.

2. How good are our estimates? : MLEs usually yield asymptotic normality for our
estimates, so that that

√
n(θ̂MLE − θ)

d→ N(0,ΣMLE) ,

where ΣMLE is the asymptotic covariance matrix. If we estimate ΣMLE, we can
assess the large-sample error in θ̂MLE.

However, for estimators that are not MLEs, like bridge regression, an asymptotic
distribution is difficult to construct. So we need a method to assess understand
the distribution of estimators.

Both points above can be addressed by resampling techniques which we will cover
in this week. We will cover two resampling methods each to address two different
concepts: model selection and model performance. Although both the methods can be
used to address both things, we will focus on

• Cross-validation: for model selection – choosing tuning parameters

1

• Bootstrapping: to estimate model performance – obtain empirical distributions
of estimators.

Cross-validation will be used to find the best tuning parameters. However, before we
can proceed, we need to understand how to assess the quality of a model. First, we
will learn a little about loss functions.

1.1 Loss functions

A loss function is a measure of error of an estimator from the true value. Having
observed data, y, let f̂ be the model fit. Then a loss function is a function L(y, f̂) that
quantifies the distance between y and f̂ . The form of the loss function may depend on
the type of data. We will focus only on binary/Gaussian regression and the Gaussian
mixture models.

• Linear regression: In penalized or non-penalized regression, we have an obser-
vation y, covariates X, and a regression coefficient, β. Let β̂ be the estimated
regression coefficient – this could be obtained via ridge, bridge, or regular regres-
sion. Then the estimated response is

f̂(x) = xT β̂ .

A loss function measures the error between y and the estimated response ŷ =
f̂(x). For continuous response y, there are two popular loss functions:

– Squared error: L(y, f̂(x)) = (y − f̂(x))2

– Absolute error: L(y, f̂(x)) = |y − f̂(x)|

We will focus mainly on the squared error loss.

• Binary data classification: For binary data models, like logistic regression, a
popular loss function is the misclassification also known as the 0− 1 loss. Given
response y which are Bernoulli(p) where

p =
eXβ

1 + eXβ
,

we can find the estimated p, p̂ by setting

p̂ =
eXβ̂MLE

1 + eXβ̂MLE

,

where β̂MLE are the MLE estimates obtained using an optimization algorithm.
These p̂ are the estimated probability of success. Set f̂(x) = 1·I{p̂ ≥ .5}+0·I{p̂ <
.5}. (The cutoff, .5, is the default cutoff, but can be changed depending on the
problem). Then the misclassification loss function checks whether the model has
misclassified the observation

Misclassification or 0− 1 loss : L(y, f̂(x)) = I(y 6= f̂(x)) .

2

• Gaussian mixture model: Where there are no “response” and “covariates”,
like the Gaussian mixture model (GMM) example, it is difficult to implement
the above two loss functions. But recall, that in the GMM example, we used the
log-likelihood to see whether our estimates were good. Thus, we can use negative
log-likelihood to see how bad our estimates are. Thus, here the loss function is:

L(x, θ̂) = − log f(x|θ̂) .

We will discuss the specific GMM case in more detail later.

How do we use these loss functions?

Given a dataset, we are interested in estimating the test error which is the expected
loss, of an independent dataset given estimates from the current dataset. If our given
dataset is D

ErrD = E
[
L(y, f̂(x)) | D

]
,

where f̂(x) denotes the estimated y for a new independent dataset, given estimators
from the current dataset. For example, using β̂ from a given dataset D, then f̂(x) =
Xnewβ̂.

Test error is built for a given dataset D. We are interested in the expected prediction
error which is the expected test error over all such D:

Err = E
[
L(y, f̂(x))

]
= E

[
E
[
L(y, f̂(x)) | D

]]
= E [ErrD]

The expected prediction error is the expected error in predicting y for new datasets
given models built from any dataset.

So, given different values of a tuning parameter, our goal is to compare the prediction
error, and choose the tuning parameter which yields the lowest test error. But, the test
error requires obtaining the loss on independent datasets . We just have one dataset
available to use.

This is where cross-validation is critically useful.

1.2 Cross-validation

Cross-validation provides a way to estimate the prediction error. In cross-validation,
our original dataset is broken into chunks in order to emulate independent datasets.
Then the model is fit on one chunk and tested on another, with the loss recorded. The
way these broken into chunks can lead to different methods.

3

1.2.1 Leave-one-out Cross-Validation

In leave-one-out cross-validation (LOOCV), the data D of size n is split a training set
of size n−1 and a test set of size 1. This is repeated for systematically all observations
so that there are n such splits possible.

For each split, the test error is estimated, and the average error over all splits is
calculated, which estimates the expected prediction error for a model fit f̂(x). Let
f̂−i(xi) denote the predicted value of yi using the model that removes the ith data
point. Then CV estimate of prediction error is

CV1(f̂) =
1

n

n∑
i=1

L(yi, f̂
−i(xi)) .

Note that each f̂−i(xi) represents model fits for different datasets, with testing on one
observation. Thus CV1(f̂) estimates the prediction error, with n observations for the
outer expectation and one observation for the inner expectation.

CV1(f̂) can be calculated for different models or tuning parameters:

CV1(f̂ , λ) =
1

n

n∑
i=1

L(yi, f̂
−i(xi, λ)) .

The chosen model is the one with λ such that

λchosen = arg min
λ

{
CV1(f̂ , λ)

}
The final model is f̂(X,λchosen) fit to all the data. In this way we can accomplish two
things: obtain an estimate of the prediction error and choose a model.

Points:

• CV1(f̂) is an approximately unbiased estimator of the expected prediction error

• This is computationally burdensome since the model is fit n times for each λ.

1.2.2 K-fold cross-validation

The data is randomly split into K roughly equal-sized parts. For any kth split, the
rest of the K − 1 parts make up the training set and the model is fit to the training

4

set. We then estimate the test error error for each element in the kth part. Repeating
this for all k = 1, 2, . . . , K parts, we have an averaged prediction error.

Let κ : {1, . . . , N} 7→ {1, . . . , K} indicates the partition to which each ith observation
belongs. Let f̂−κ(i)(x) be the fitted function for the κ(i)th partition removed. Then,
the estimated prediction error is

CVK(f̂ , λ) =
1

K

K∑
k=1

1

n/K

∑
i∈kthsplit

L(yi, f̂
−κ(i)(xi, λ)) =

1

n

n∑
i=1

L(yi, f̂
−κ(i)(xi, λ)) .

The chosen model is the one with λ such that

λchosen = arg min
λ

{
CVK(f̂ , λ)

}
The final model is f̂(X,λchosen) fit to all the data.

Points:

• For small K, the bias is large since the inner loss function is not estimating ErrD
but ErrD1 , where D1 is considerably smaller than D.

• Also, the computational burden is lesser when K is small.

Usually, for large datasets, 10-fold or 5-fold CV is common. For small datasets, LOOCV
is more common.

1.3 Comparing different cross-validations

Before going into examples of using cross-validation, we will demonstrate the esti-
mation quality of various cross-validation techniques: Leave-one-out cross-validation
(LOOCV), 10-fold CV, and 5-fold CV.

##

Implementing CV methods for a simulated dataset

We will generate X and y and generating new independent

X.new and y.new, we will calculate the "true" prediction error

Then we implement the LOOCV, and K-fold CV

##

set.seed(10)

n <- 100

5

p <- 50

sigma2.star <- 4

beta.star <- rnorm(p, mean = 2)

beta.star # to output

repeat 500 times

B <- 5e2

foo <- 0

Setting size of test data and training data

test.size <- floor(n/5)

we will use the following code to make our K-fold splits

permutation <- sample(1:n, replace = FALSE) # random permutation of 1:n

K <- 5

Making a list of indices for each split

(test.index <- split(permutation, rep(1:K, length = n, each = n/K)))

#$‘1‘

[1] 31 87 1 59 25 39 16 98 99 65 12 52 58 95 94 24 22 13 9 89

#

#$‘2‘

[1] 100 61 85 97 91 47 92 70 75 88 68 4 29 21 30 56

#[17] 7 26 28 57

#

#$‘3‘

[1] 62 38 34 53 27 2 73 23 74 55 33 81 10 44 76 60 90 17 20 80

#

#$‘4‘

[1] 18 36 48 64 86 46 45 66 11 93 49 84 40 5 19 96 41 77 63 50

#

#$‘5‘

[1] 42 3 54 43 35 14 51 37 67 72 79 83 8 78 6 82 15 32 71 69

CV.error <- matrix(0, nrow = B, ncol = 4)

time <- matrix(0, nrow = B, ncol = 3)

colnames(CV.error) <- c("Truth","LOOCV", "10-fold", "5-fold")

In the above code, we have obtained a true β∗ with p = 50 and we have set n = 100.
I also provide the code I will use to make CV splits.

Next, we will simulate a dataset, D = (y,X) multiple times and estimate a regression
coefficient β for each of those datasets. Then for every dataset, we will generate new
independent copies of new data for testing. This will allow us to understand what the
true prediction error will be, and allow us to compare CV estimates with the truth.

6

for(b in 1:B)

{

code takes a while, hence printing for feedback

if(b %% 100 == 0) print(b)

Generate new d

Making design matrix, first column is 1

X <- cbind(1, matrix(rnorm(n*(p-1)), nrow = n, ncol = (p-1)))

Generating response

y <- X %*% beta.star + rnorm(n, mean = 0, sd = sqrt(sigma2.star))

beta.mle <- solve(t(X) %*% X) %*% t(X) %*% y

independent new X and y

X.new <- cbind(1, matrix(rnorm(n*(p-1)), nrow = n, ncol = (p-1)))

y.new <- X.new %*% beta.star + rnorm(n, mean = 0, sd = sqrt(sigma2.star))

CV.error[b, 1] <- mean((y.new - X.new %*% beta.mle)^2)

##

Leave-one-out Cross-validation

time0 <- proc.time()[3]

foo2 <- 0

for(i in 1:n)

{

Making training data

X.train <- X[-i,] # removing ith X

y.train <- y[-i] #removing ith y

fitting model for training data

beta.train <- solve(t(X.train) %*% X.train) %*% t(X.train) %*% y.train

test error

foo2 <- foo2 + (y[i] - X[i,] %*% beta.train)^2

}

CV.error[b, 2] <- foo2/n

time[b,1] <- proc.time()[3] - time0

##

10-fold Cross-validation

permutation <- sample(1:n, replace = FALSE)

7

K <- 10

Making a list of indices for each split

test.index <- split(permutation, rep(1:K, length = n, each = n/K))

time0 <- proc.time()[3]

foo3 <- 0

for(k in 1:K)

{

X.train <- X[-test.index[[k]],]

y.train <- y[-test.index[[k]]]

X.test <- X[test.index[[k]],]

y.test <- y[test.index[[k]]]

beta.train <- solve(t(X.train) %*% X.train) %*% t(X.train) %*% y.train

foo3 <- foo3 + sum((y.test - X.test %*% beta.train)^2)

}

CV.error[b, 3] <- foo3/n

time[b,2] <- proc.time()[3] - time0

##

5-fold Cross-validation

Making a permutation from 1:n

permutation <- sample(1:n, replace = FALSE)

K <- 5

test.index <- split(permutation, rep(1:K, length = n, each = n/K))

time0 <- proc.time()[3]

foo4 <- 0

for(k in 1:K)

{

X.train <- X[-test.index[[k]],]

y.train <- y[-test.index[[k]]]

X.test <- X[test.index[[k]],]

y.test <- y[test.index[[k]]]

beta.train <- solve(t(X.train) %*% X.train) %*% t(X.train) %*% y.train

foo4 <- foo4 + sum((y.test - X.test %*% beta.train)^2)

}

CV.error[b, 4] <- foo4/n

time[b,3] <- proc.time()[3] - time0

##

}

8

LOOCV is most accurate

colMeans(CV.error)

Truth LOOCV 10-fold 5-fold

8.146910 8.101374 9.124679 10.882481

LOOCV is expensive

colMeans(time)

[1] 0.069552 0.006628 0.002676

We see that LOOCV yields estimates closest to the truth, with 5-fold being the farthest
from the truth. However, 5-fold is the fastest to implement and LOOCV is significantly
slower.

Since we have B = 500 estimates of the prediction error, we can compare their overall
distribution as well:

LOOCV is the closest

plot(density(CV.error[,1]), xlim = range(CV.error), ylim = c(0, .30), main

= "Estimated density of CV error")

lines(density(CV.error[,2]), col = "red")

lines(density(CV.error[,3]), col = "orange")

lines(density(CV.error[,4]), col = "green")

legend("topright", legend = colnames(CV.error), col = c("black", "red",

"orange", "green"), lty = 1)

5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Estimated density of CV error

N = 500 Bandwidth = 0.3827

D
en

si
ty

Truth
LOOCV
10−fold
5−fold

Thus, through this simulation, we see that LOOCV is the closest to the truth, however,
if the dataset is large, it can be too time consuming to implement it. On the other hand,
5-fold CV is not that accurate. If computation allows it, 10-fold CV is a good sacrifice

9

between computation time and accuracy. We will present examples of implementation
of cross-validation for regression and Gaussian mixture model.

2 Questions to think about

• What happens to the log-likelihood for Gaussian mixture model if we keep in-
creasing C?

• Would would happen to the quality of estimation of the prediction error if we
increase n, the sample size?

10

