
MTH 511a - 2020: Lecture 21

Instructor: Dootika Vats

The instructor of this course owns the copyright of all the course materials. This lecture

material was distributed only to the students attending the course MTH511a: “Statistical

Simulation and Data Analysis” of IIT Kanpur, and should not be distributed in print or

through electronic media without the consent of the instructor. Students can make their own

copies of the course materials for their use.

1 Resampling Methods

1.1 Cross-validation

In this lecture, we will cover some examples of using cross-validation.

1.1.1 Regression model selection

Ridge regression:

Recall the regression model:
Y = Xβ + ε ,

where ε ∼ Nn(0, σ2 In). In this example subsection, we will focus our attention only on
ridge regression estimators. Similar cross-validations can be done for bridge regression.
Recall the ridge objective function for a given λ is

Qλ(β) =
(y −Xβ)T (y −Xβ)

2
+
λ

2
βTβ .

Recall, the ridge estimator of β is

β̂λ = (XTX + λIn)−1XTy .

Here, the solution for β depends on the value of λ. We want to choose λ so that
prediction error is minimized. We choose the squared error loss function.

1

To choose the best model in this case, we set a vector of λ : λ1, . . . , λm. For each λi, we
will implement 10-fold cross-validation and estimate the prediction error. Whichever
λ minimzies the prediction error, will be the chosen λ.

Consider the mtcars dataset in R. The data was extracted from the 1974 Motor Trend
US magazine, and comprises fuel consumption and 10 aspects of automobile design
and performance for 32 automobiles (197374 models). The response is the miles per
gallon of the 32 cars. Run a ?mtcars in R to learn more about the dataset.

##

Choosing lambda in ridge regression

using LOOCV

dataset is mtcars

##

data(mtcars)

y <- mtcars$mpg

X <- cbind(1, as.matrix(mtcars[,-1]))

n <- dim(X)[1]

p <- dim(X)[2]

lam.vec <- c(10^(seq(-8, 8, by = .1)))

CV.error <- numeric(length = length(lam.vec))

for(l in 1:length(lam.vec))

{

foo2 <- 0

lam <- lam.vec[l]

for(i in 1:n)

{

Making training data

X.train <- X[-i,] # removing ith X

y.train <- y[-i] #removing ith y

fitting model for training data

beta.train <- solve(t(X.train) %*% X.train + lam*diag(p)) %*% t(X.train)

%*% y.train

test error

foo2 <- foo2 + (y[i] - X[i,] %*% beta.train)^2

}

CV.error[l] <- foo2/n

}

lambda that yields minimum error is chosen

(chosen.lam <- lam.vec[which.min(CV.error)])

[1] 5.011872

beta.final <- solve(t(X) %*% X + chosen.lam*diag(p)) %*% t(X) %*% y

2

beta.final

[,1]

0.247777096

cyl 0.346710987

disp -0.007378144

hp -0.008715992

drat 1.420911900

wt -1.653648857

qsec 0.938547096

vs -0.077511677

am 1.443975953

gear 1.530167865

carb -0.745846809

Bridge regression:

For the same dataset, we now implement bridge regression with a grid of values for α
and λ. We will use 4-fold cross validation.

##

Choosing lambda and alpha in bridge regression

using 4-fold dataset is mtcars

##

set.seed(12)

data(mtcars)

y <- mtcars$mpg

X <- cbind(1, as.matrix(mtcars[,-1]))

n <- dim(X)[1]

p <- dim(X)[2]

MM algorithm for bridge regression

for any alpha and lambda

bridge <- function(y, X, lambda, alpha, tol = 1e-8)

{

current <- solve(t(X) %*%X + diag(lambda,p)) %*% t(X) %*%y # start at

ridge solution

iter <- 0

diff <- 100

while((diff > tol) && iter < 1000)

{

iter <- iter + 1

M matrix diagonals

ms <- as.vector(lambda/2 *(abs(current))^(alpha - 2))

MM update -- using qr.solve for numerical stability

update <- qr.solve(t(X) %*% X + diag(ms, p)) %*% t(X) %*% y

3

diff <- sum((current - update)^2)

current <- update

}

return(current)

}

lam.vec <- 1:10

alpha <- seq(1,2, by =.05)

CV.error <- matrix(0, nrow = length(lam.vec), ncol = length(alpha))

permutation <- sample(1:n, replace = FALSE)

K <- 4

Making a list of indices for each split

test.index <- split(permutation, rep(1:K, length = n, each = n/K))

for(l in 1:length(lam.vec))

{

lam <- lam.vec[l]

for(a in 1:length(alpha))

{

foo3 <- 0

for(k in 1:K)

{

X.train <- X[-test.index[[k]],]

y.train <- y[-test.index[[k]]]

X.test <- X[test.index[[k]],]

y.test <- y[test.index[[k]]]

beta.train <- bridge(y.train, X.train, lambda = lam, alpha = alpha[a])

foo3 <- foo3 + sum((y.test - X.test %*% beta.train)^2)

}

CV.error[l,a] <- foo3/n

}

}

lambda that yields minimum error is chosen

ind <- which(CV.error == min(CV.error), arr.ind = TRUE)

(chosen.alpha <- alpha[ind[2]])

(chosen.lam <- lam.vec[ind[1]])

Final estimates

bridge(y, X, lambda = chosen.lam, alpha = chosen.alpha)

[,1]

0.0040899424

4

cyl 0.2506111993

disp 0.0038803710

hp -0.0145184786

drat 1.3829350298

wt -2.7347035965

qsec 1.0656202488

vs -0.0001061083

am 1.8796458185

gear 1.3880810512

carb -0.4745591302

1.1.2 Choosing C in GMM

We have discussed before that for choosing C, the usual loss functions don’t work since
there is not response and covariate. However, we know that models that yield the
highest log-likelihood or the lowest negative log-likelihood are preferred. Thus, the loss
function is:

L(x, θ̂) = − log f(x|θ̂) .

We observe X1, . . . , Xn from a mixture of normals and split the data up into testing
and training CV sets. We fit the EM algorithm to estimate the MLE from c = 2, . . . , C
classes over the training sets and estimate the prediction error.

Note that if use the negative log-likelihood on the full dataset to choose the number of
classes C, we can keep reducing the loss by continually increasing C, until each data
point is a cluster in itself. Thus the CV algorithm is critical here.

Below are functions that calculate the negative log-likelihood and that implement the
EM algorithm for multivariate GMM.

###

EM algorithm to fit mixture of Gaussians

to multivariate data (old faithful)

###

set.seed(12)

calculate negative log-likelihood

of mixture of multivariate normal

log_like <- function(X, pi.list, mu.list, Sigma.list, C)

{

foo <- 0

for(c in 1:C)

{

foo <- foo + pi.list[[c]]*dmvnorm(X, mean = mu.list[[c]], sigma =

Sigma.list[[c]])

}

5

return(-sum(log(foo)))

}

X is the data

C is the number of clusters

GLMMforC <- function(X, C, tol = 1e-3, maxit = 1e3)

{

n <- dim(X)[1]

p <- dim(X)[2]

######## Starting values ###################

pi are equally split over C

pi.list <- rep(1/C, C)

mu <- list()

Sigma <- list()

The means for each C cannot be the same,

since then the three distributions overlap

Hence adding random noise to colMeans(X)

for(i in 1:C)

{

mu[[i]] <- rnorm(p, sd = 3) + colMeans(X)

Sigma[[i]] <- var(X)

}

Choosing good starting values is important since

The GMM likelihood is not concave, so the algorithm

may converge to a local optima.

######## EM algorithm steps ###################

iter <- 0

diff <- 100

old.mu <- mu

old.Sigma <- Sigma

old.pi <- pi.list

Ep <- matrix(0, nrow = n, ncol = C) # gamma_{i,c}

save.loglike <- 0

while((diff > tol) && (iter < maxit))

{

iter <- iter + 1

E step: find gammas

for(c in 1:C)

{

Ep[,c] <- pi.list[c]*apply(X, 1, dmvnorm , mu[[c]], Sigma[[c]])

}

Ep <- Ep/rowSums(Ep)

6

M-step

pi.list <- colMeans(Ep)

for(c in 1:C)

{

mu[[c]] <- colSums(Ep[,c] * X)/sum(Ep[,c])

}

for(c in 1:C)

{

foo <- 0

for(i in 1:n)

{

foo <- foo + (X[i,] - mu[[c]]) %*% t(X[i,] - mu[[c]]) * Ep[i,c]

}

Sigma[[c]] <- foo/sum(Ep[,c])

Below is to ensure the estimator is positive definite

otherwise next iteration gamma_i,c,k cannot be calculated

Sigma[[c]] <- Sigma[[c]] + diag(1e-5, p)

}

save.loglike <- c(save.loglike, log_like(X = X, pi.list = pi.list,

mu.list = mu, Sigma.list = Sigma, C = C))

Difference in the log-likelihoods as the difference criterion

diff <- abs(save.loglike[iter+1] - save.loglike[iter])

old.mu <- mu

old.Sigma <- Sigma

old.pi <- pi.list

}

Final allocation updates

for(c in 1:C)

{

Ep[,c] <- pi.list[c]*apply(X, 1, dmvnorm , mu[[c]], Sigma[[c]])

}

Ep <- Ep/rowSums(Ep)

return(list("pi" = pi.list, "mu" = mu, "Sigma" = Sigma, "Ep" = Ep,

"log.like" = tail(save.loglike,1)))

}

Next, we will do CV to choose the number of clusters in the faithful dataset. We
choose between 2, 3, 4 classes.

NOTE: Because EM for GLMM does not converge to a global maxima, for each cross-

7

validation set, we run the algorithm multiple times from different starting values, and
choose the run that produced the lowest negative log-likelihood.

Functions needed for cross validation

My data set

data(faithful)

X <- as.matrix(faithful)

n <- dim(X)[1]

##

5-fold Cross-validation

permutation <- sample(1:n, replace = FALSE)

K <- 5

Uneven folds, but that is ok

test.index <- split(permutation, rep(1:K, length = n, each = n/K))

Testing whether 2-4 classes are needed

potC <- 2:4

CV.errorLike <- numeric(length = length(potC))

will run EM multiple times for each training data

since EM convergence to local minima. Setting these

reps = 7

reps <- 5

model.save <- list()

for(c in 1:length(potC))

{

foo3 <- 0

for(k in 1:K)

{

print(c(c,k))

X.train <- X[-test.index[[k]],]

X.test <- X[test.index[[k]],]

for(r in 1:reps)

{

model.save[[r]] <- GLMMforC(X = X.train, C = potC[c])

}

which ever run is the lowest negative log-like

chosen.run <- which.min(sapply(model.save, function(t) t$log.like))

model <- model.save[[chosen.run]]

foo3 <- foo3 + log_like(X = X.test, pi.list = model$pi, mu.list

=model$mu, Sigma.list = model$Sigma, C = potC[c])

}

CV.errorLike[c] <- foo3/n

}

8

CV.errorLike #Lowest value is for C = 3,

[1] 4.217456 4.215619 4.232590

Thus choose C = 3 classes.

When you run the above code you see there are multiple issues with using CV for
model selection in this example

• Time: The cross-validation is time consuming particularly because we have to
run the mode for multiple starting values

• Final model: The method does not give you the final estimates, which means
you need to run the model again for the chosen C. However, it is possible when
you run it again that you converge to a different solution!

Thus, an alternative model selection procedure is used, called the Akaike Information
Criterion:

AIC(θ̂ | x) = −2 log l(θ̂|x) + 2K

where K is the number of parameters being estimated. AIC(θ̂ | x) is calculated by
fitting the model on the full dataset . Since the negative log-likelihood will increase as
you increase the number of clusters, the penalty term of 2K penalizes the usage of too
many clusters.

In our 2-dimensional GMM example K = 2 ∗ C + (C − 1) + 3C = 6C − 1.

Another similar information criterion is the Bayesian Information Criterion (BIC)
defined as

BIC(θ̂ | x) = −2 log l(θ̂|x) + log(n)K

where K is again the number of parameters being estimated. The BIC criterion in-
creases the penalty term when the number of data are larger. This makes sense since
when large number of data are available, we should be able to find simpler models. It
is well known that the BIC criterion is theoretically superior to the AIC criterion and
even in this examples works better.

######################################

Model selection via AIC

######################################

aic <- function(X, pi.list, mu.list, Sigma.list, C)

{

nlike <- log_like(X, pi.list, mu.list, Sigma.list, C)

rtn <- 2*nlike + 2* (6*C - 1) # No. of params = 3*C - 1

return(rtn)

}

bic <- function(X, pi.list, mu.list, Sigma.list, C)

{

n <- dim(X)[1]

9

nlike <- log_like(X, pi.list, mu.list, Sigma.list, C)

rtn <- 2*nlike + log(n)* (6*C - 1) # No. of params = 3*C - 1

return(rtn)

}

aicLike <- numeric(length = length(potC))

bicLike <- numeric(length = length(potC))

reps <- 5

model.save <- list()

model <- list()

for(c in 1:length(potC))

{

print(c)

for(r in 1:reps)

{

model.save[[r]] <- GLMMforC(X = X, C = potC[c])

}

chosen.run <- which.min(sapply(model.save, function(t) t$log.like))

model[[c]] <- model.save[[chosen.run]]

aicLike[c] <- aic(X = X, pi.list = model[[c]]$pi, mu.list =model[[c]]$mu,

Sigma.list = model[[c]]$Sigma, C = potC[c])

bicLike[c] <- bic(X = X, pi.list = model[[c]]$pi, mu.list =model[[c]]$mu,

Sigma.list = model[[c]]$Sigma, C = potC[c])

}

aicLike # Lowest is C = 4 is the best!

[1] 2282.528 2272.431 2255.077

bicLike # Lowest is C = 2

[1] 2322.192 2333.730 2338.011

C = 4 gives the lowest AIC and C = 2 gives the lowest BIC. Note that since we’ve
saved the model, we can now just use that model without rerunning anything. This is
a very useful feature of model selection via AIC/BIC.

par(mfrow = c(1,2))

chosen <- which.min(aicLike)

allot <- apply(model[[chosen]]$Ep, 1, which.max) ## Final allotment of

classification

plot(X[,1], X[,2], col = allot, pch = 16, main = "AIC: C = 4") # plot

allotment

ell <- list()

for(c in 1:potC[[chosen]])

{

ell[[c]] <- ellipse(model[[chosen]]$Sigma[[c]], centre =

10

as.numeric(model[[chosen]]$mu[[c]]))

lines(ell[[c]], col = c)

}

chosen <- which.min(bicLike)

allot <- apply(model[[chosen]]$Ep, 1, which.max) ## Final allotment of

classification

plot(X[,1], X[,2], col = allot, pch = 16, main = "BIC: C = 2") # plot

allotment

ell <- list()

for(c in 1:potC[[chosen]])

{

ell[[c]] <- ellipse(model[[chosen]]$Sigma[[c]], centre =

as.numeric(model[[chosen]]$mu[[c]]))

lines(ell[[c]], col = c)

}

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50
60

70
80

90

AIC: C = 4

X[, 1]

X
[,

2]

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50
60

70
80

90

BIC: C = 2

X[, 1]

X
[,

2]

Clearly, using AIC, the model chooses C = 4, which is clearly not a good model since
it has only one point in the fourth cluster. Clearly, the penalty added in AIC is not
enough to ensure against over-fitting. Using BIC imposes extra penalty that helps
against overfitting.

Thus, we recommend using BIC (and sometimes AIC) over CV for fitting Gaussian
mixture models.

11

