MTH 707A: Markov chain Monte Carlo

INSTRUCTOR	Dootika Vats 607 Rajeev Motwani Building Th: 12:00pm - 1:15pm (on Zoom)	<i>E-mail:</i> dootika@iitk.ac.in <i>Web:</i> https://dvats.github.io/
Course Description	The course will provide a theoretical foundation for constructing and studying Markov chain Monte Carlo (MCMC) algorithms, along with tools for analyzing MCMC output. The course will primarily focus on discrete-time Markov chains on general state spaces. Special focus will be given on rates of convergence of a Markov chain and comparing different MCMC algorithms. Focus will be on the theoretical details embedded within an MCMC algorithm. The objective is to equip students with the tools to develop, study, and implement an MCMC algorithm for any given problem.	
Course Webpage	- •	boKIT. All video lectures and notes will be updated there. A wats.github.io/teaching/MTH707, which will have generic
References	There will be no one particular book However, following will be useful refe	we will follow. The course notes will be the primary reference. rences.
	• Meyn, S. and Tweedie, R. (200 versity Press	9). Markov Chains and Stochastic Stability. Cambridge Uni-
	• Robert, C. and Casella, G. (19 York.	99). Monte Carlo Statistical Methods. SpringerVerlag, New-
	• Brooks, Steve, Andrew Gelman Markov chain Monte Carlo. CF	n, Galin Jones, and Xiao-Li Meng, eds (2011). Handbook of C press.
	• General state space Markov cha	ins and MCMC algorithms by Roberts and Rosenthal.
Topics covered	Harris recurrence. Types of MCMC	nain transition kernels, reversibility, irreducibility, ergodicity, algorithm, rates of convergence, proving geometric ergodicity, Markov chains, Markov chain CLT, variance estimation, output tation.
Prerequisites	There is no particular prerequisite re- analysis, statistics, randomness, and	quired for the course, except for a comfortable familiarity with measure theory.
Computing in R	All implementations of MCMC algorishort R programs. So sufficient worki	thms will be done in R . Often, I would expect students to run ng knowledge of R is required.
Marks		ubmitted online on mooKIT approximately every two weeks. ss-room after the add/drop phase, I will decide whether home- owed.
	projects with presentations or a bigge	% of the grade. This project may be broken down into smaller er project. More will be shared on this later. Since the class is ased. These groups will be made after the add-drop period is
	There is no mid-sem exam.	

Homeworks	30%
Project	30%
Final Exam	40%

WHAT IS Reproducing another student's homework is cheating. Reproducing from a paper without reference CHEATING? is cheating. Copying code is cheating. This class encourages group discussions and brainstorming sessions, but each student must write their own assignment independently. Academic dishonesty and plagiarism will have consequences.