publications

an up-to-date list is also available on Google Scholar

Preprints

2025

  1. MCMC Importance Sampling via Moreau-Yosida Envelopes
    Apratim ShuklaDootika Vats, and Eric C. Chi
    2025

2024

  1. Exact MCMC for Intractable Proposals
    Dwija Kakkad, and Dootika Vats
    2024
  2. Efficient Multivariate Initial Sequence Estimators for MCMC
    Arka Banerjee, and Dootika Vats
    2024

2023

  1. On the Utility of Equal Batch Sizes for Inference in Stochastic Gradient Descent
    Rahul Singh , Abhinek Shukla, and Dootika Vats
    2023
  2. Solving the Poisson equation using coupled Markov chains
    Randal DoucPierre E. JacobAnthony Lee, and Dootika Vats
    2023

2020

  1. Estimating Monte Carlo variance from multiple Markov chains
    Kushagra Gupta, and Dootika Vats
    2020

Journal articles

2024

  1. Multivariate strong invariance principles in Markov chain Monte Carlo
    Arka Banerjee, and Dootika Vats
    Electronic Journal of Statistics, 2024

2023

  1. Optimal scaling of MCMC beyond Metropolis
    Advances in Applied Probability, 2023

2022

  1. A principled stopping rule for importance sampling
    Medha AgarwalDootika Vats , and Víctor Elvira
    Electronic Journal of Statistics, 2022
  2. Dimension-free mixing for high-dimensional Bayesian variable selection
    Journal of the Royal Statistical Society: Series B, 2022
  3. Globally-centered autocovariances in MCMC
    Medha Agarwal, and Dootika Vats
    Journal of Computational and Graphical Statistics, 2022
  4. Lugsail lag windows for estimating time-average covariance matrices
    Dootika Vats, and James M Flegal
    Biometrika, 2022
  5. Efficient Bernoulli factory MCMC for intractable posteriors
    Biometrika, 2022
  6. Batch size selection for variance estimators in MCMC
    Ying Liu, Dootika Vats, and James M Flegal
    Methodology and Computing in Applied Probability, 2022

2021

  1. Invited Discussion: "Rank-Normalization, Folding, and Localization: An Improved R-hat for Assessing Convergence of MCMC by Vehtari et. al."
    Dootika Vats, and Galin Jones
    Bayesian Analysis, 2021
  2. Monte Carlo simulation: Are we there yet?
    Dootika VatsJames M Flegal, and Galin L Jones
    Wiley StatsRef: Statistics Reference Online, 2021
  3. Revisiting the Gelman-Rubin diagnostic
    Dootika Vats, and Christina Knudson
    Statistical Science, 2021

2020

  1. Assessing and Visualizing Simultaneous Simulation Error
    Nathan Robertson, James M FlegalDootika Vats, and Galin L Jones
    Journal of Computational and Graphical Statistics, 2020
  2. Analyzing Markov chain Monte Carlo output
    Dootika Vats, Nathan Robertson, James M Flegal, and Galin L Jones
    WIREs Computational Statistics, 2020
  3. Comment: "Unbiased Markov chain Monte Carlo with couplings" by Jacob et. al.
    Dootika Vats, and Galin L Jones
    Journal of the Royal Statistical Society, Series B, 2020

2019

  1. Multivariate output analysis for Markov chain Monte Carlo
    Dootika VatsJames M Flegal, and Galin L Jones
    Biometrika, 2019

2018

  1. Strong Consistency of Multivariate Spectral Variance Estimators in Markov chain Monte Carlo
    Dootika VatsJames M Flegal, and Galin L Jones
    Bernoulli, 2018

2017

  1. Geometric ergodicity of Gibbs samplers in Bayesian penalized regression models
    Dootika Vats
    Electronic Journal of Statistics, 2017

Book chapters

2020

  1. Monte Carlo simulation: Are we there yet?
    Dootika VatsJames M Flegal, and Galin L Jones
    2020

Technical reports

2022

  1. Understanding Linchpin Variables in Markov Chain Monte Carlo
    Dootika Vats, Felipe Acosta , Mark L. Huber, and Galin L. Jones
    2022

2021

  1. Bayesian equation selection on sparse data for discovery of stochastic dynamical systems
    Kushagra GuptaDootika Vats, and Snigdhansu Chatterjee
    2021